Skip to main content

Immune Response to Suicide Gene Therapy

  • Protocol
Suicide Gene Therapy

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 90))

  • 596 Accesses

Abstract

Many types of cancer become resistant to current chemotherapeutic and radiotherapeutic interventions. To overcome this situation, applications of gene therapy may be promising. Whereas many types of transgene, such as tumor suppressor genes and cytokine genes, have potential tumoricidal effects (1), genes encoding for prodrug-activating enzymes, the so-called suicide genes, are very promising and have been intensively investigated (2,3). The basic principle underlying suicide gene systems is intracellular conversion of a relatively nontoxic prodrug to a highly toxic drug by an enzyme that is not normally present in the cell. Viruses, bacteria, and fungi often use unique metabolic pathways not used by mammalian cells and contain genes for enzymes that perform metabolic conversions that mammalian cells do not perform. Such distinctive enzymes have often been the targets of drugs developed for the treatment of infections. Such agents are lethal for the infecting microbes but do not harm the host cell because it lacks the enzyme system necessary to activate the drug (4,5). After genetically modifying tumor cells to express such enzymes, systemic prodrug treatment leads to the selective killing of tumor cells. The effectiveness of suicide gene-prodrug strategies against cancer has been shown in animal models carrying various types of cancer, and the transfer of a suicide gene into tumor cells followed by administration of the appropriate prodrug is currently being used in various clinical gene therapy trials for the treatment of cancer (610).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roth, J. A. and Cristiano, R. J. (1997) Gene therapy for cancer: what have we done and where are we going? J. Natl. Cancer Inst. 89, 21–39.

    Article  PubMed  CAS  Google Scholar 

  2. Connors, T. A. (1995) The choice of prodrugs for gene directed enzyme prodrug therapy on cancer. Gene Ther. 2, 702–709.

    PubMed  CAS  Google Scholar 

  3. Aghi, M., Hochberg, F., and Breakefield, X. O. (2000) Prodrug activation enzymes in cancer gene therapy. J. Gene Med. 2, 148–164.

    Article  PubMed  CAS  Google Scholar 

  4. Mullen, C. A. (1994) Metabolic suicide genes in gene therapy. Pharmacol. Ther. 63, 199–207.

    Article  PubMed  CAS  Google Scholar 

  5. Moolten, F. L. (1994) Drug sensitivity (“suicide”) genes for selective cancer chemotherapy. Cancer Gene Ther. 1, 279–287.

    PubMed  CAS  Google Scholar 

  6. Crystal, R. G. (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270, 404–410.

    Article  PubMed  CAS  Google Scholar 

  7. Ross, G. (1996) Gene therapy in the United States: a five-year status report. Hum. Gene Ther. 7, 1781–1790.

    Article  PubMed  CAS  Google Scholar 

  8. Marcel, T. and Grausz, J.D. (1996) The TMC worldwide gene therapy enrollment report (June 1996). Hum. Gene Ther. 7, 2025–2046.

    Article  PubMed  CAS  Google Scholar 

  9. Smythe, W. R. (2000) Prodrug/drug sensitivity gene therapy: current status. Curr. Oncol. Rep. 2, 17–22.

    Article  PubMed  CAS  Google Scholar 

  10. Human gene marker/therapy clinical protocols. (2000) Hum. Gene Ther. 11, 2543–2617.

    Google Scholar 

  11. Elion, G. B., Furman, P. A., Fyfe, J. A., de Miranda, P., Beauchamp, L., and Schaeffer, H. J. (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc. Natl. Acad. Sci. USA 74, 5716–5720.

    Article  PubMed  CAS  Google Scholar 

  12. Field, A. K., Davies, M. E., DeWitt, C., et al. (1983) 9-[2-Hydroxyl-1-(hydroxymethyl) ethoxy] methyl guanine: a selective inhibitor of herpes group virus replication. Proc. Natl. Acad. Sci. USA 80, 4139–4143.

    Article  PubMed  CAS  Google Scholar 

  13. Matthews, T. and Boehme, R. (1988) Antiviral activity and mechanism of action of ganciclovir. Rev. Infect. Dis. 10(Suppl. 3), 490–494.

    Article  Google Scholar 

  14. Balzarini, J., Bohman, C., and De Clercq, E. (1993) Differential mechanism of cytostatic effect of (E)-5-(2-bromovinyl)-2′-deoxyuridine, 9-(1,3-dihydroxy-2-propoxymethyl) guanine, and other antiherpetic drugs on tumor cells transfected by the thymidine kinase gene of herpes simplex virus type 1 or type 2. J. Biol. Chem. 268, 6332–6337.

    PubMed  CAS  Google Scholar 

  15. Kuriyama, S., Nakatani, T., Masui, K., et al. (1996) Evaluation of prodrugs ability to induce effective ablation of cells transduced with viral thymidine kinase gene. Anticancer Res. 16, 2623–2628.

    PubMed  CAS  Google Scholar 

  16. Danielsen, S., Kilstrup, M., Barilla, K., Jochimsen, B., and Neuhard, J (1992) Characterization of the Escherichia coli codBA operon encoding cytosine permease and cytosine deaminase. Mol. Microbiol. 6, 1335–1344.

    Article  PubMed  CAS  Google Scholar 

  17. Mullen, C. A., Kilstrup, M., and Blaese, R. M. (1992) Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a new negative selection system. Proc. Natl. Acad. Sci. USA 89, 33–37.

    Article  PubMed  CAS  Google Scholar 

  18. Bi, W. L., Parysek, L. M., Warnick, R., and Stambrook, P. J. (1993) In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSVtk retroviral gene therapy. Hum. Gene Ther. 4, 725–731.

    Article  PubMed  CAS  Google Scholar 

  19. Mesnil, M., Piccoli, C., Tiraby, G., Willecke, K., and Yamasaki, H. (1996) Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl. Acad. Sci. USA 93, 1831–1835.

    Article  PubMed  CAS  Google Scholar 

  20. Elshami, A. A., Saavedra, A., Zhang, H., et al. (1996) Gap junctions play a role in the “bystander effect” of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene Ther. 3, 85–92.

    PubMed  CAS  Google Scholar 

  21. Ishii-Morita, H., Agbaria, R., Mullen, C. A., et al. (1997) Mechanism of “bystander effect” killing in the herpes simplex thymidine kinase gene therapy model of cancer treatment. Gene Ther. 4, 244–251.

    Article  PubMed  CAS  Google Scholar 

  22. Freeman, S. M., Abboud, C. N., Whartenby, K. A., et al. (1993) The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274–5283.

    PubMed  CAS  Google Scholar 

  23. Samejima, Y. and Meruelo, D. (1995) “Bystander killing” induces apoptosis and is inhibited by forskolin. Gene Ther. 2, 50–58.

    PubMed  CAS  Google Scholar 

  24. Hamel, W., Magnelli, L., Chiarogi, V. P., and Israel, M. A. (1996) Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells. Cancer Res. 56, 2696–2702.

    Google Scholar 

  25. Hirschowitz, E. A., Ohwada, A., Pascal, W. R., Russi, T. J., and Crystal, R. G. (1995) In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine. Hum. Gene Ther. 6, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  26. Dong, Y., Wen, P., Manome, Y., et al. (1996) In vivo replication-deficient adenovirus vector-mediated transduction of the cytosine deaminase gene sensitizes glioma cells to 5-fluorocytosine. Hum. Gene Ther. 7, 713–720.

    Article  PubMed  CAS  Google Scholar 

  27. Kuriyama, S., Mitoro, A., Yamazaki, M., et al. (1999) Comparison of gene therapy with the herpes simplex virus thymidine kinase gene and the bacterial cytosine deaminase gene for the treatment of hepatocellular carcinoma. Scand. J. Gastroenterol. 34, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  28. Kuriyama, S., Masui, K., Sakamoto, T., et al. (1995) Bacterial cytosine deaminase suicide gene transduction renders hepatocellular carcinoma sensitive to the prodrug 5-fluorocytosine. Int. Hepatol. Commun. 4, 72–79.

    Article  Google Scholar 

  29. Kuriyama, S., Masui, K., Sakamoto, T., et al. (1998) Bystander effect caused by cytosine deaminase gene and 5-fluorocytosine in vitro is substantially mediated by generated 5-fluorouracil. Anticancer Res. 18, 3399–3406.

    PubMed  CAS  Google Scholar 

  30. Ram, Z., Walbridge, S., Heiss, J. D., Culver, K. W., Blaese, R. M., and Oldfield, E. H. (1994) In vivo transfer of the human interleukin-2 gene: negative tumoricidal results in experimental brain tumors. J. Neurosurg. 80, 535–540.

    Article  PubMed  CAS  Google Scholar 

  31. Dilber, M. S., Abedi, M. R., Christensson, B., et al. (1997) Gap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo. Cancer Res. 57, 1523–1528.

    PubMed  CAS  Google Scholar 

  32. Kuriyama, S., Sakamoto, T., Masui, K., et al. (1997) Tissue-specific expression of HSV-TK gene can induce efficient antitumor effect and protective immunity to wild-type hepatocellular carcinoma. Int. J. Cancer 71, 470–475.

    Article  PubMed  CAS  Google Scholar 

  33. Kuriyama, S., Kikukawa, M., Masui, K., et al. (1999) Cancer gene therapy with HSV-TK/GCV system depends on T-cell-mediated immune responses and causes apoptotic death of tumor cells in vivo. Int. J. Cancer 83, 374–380.

    Article  PubMed  CAS  Google Scholar 

  34. Kuriyama, S., Tsujinoue, H., Nakatani, T., et al. (2000) Gene therapy for hepatocellular carcinoma, in Molecular Target for Hematological Malignancies and Cancer (Niho, Y., ed.), Kyushu University Press, Fukuoka, Japan, pp. 29–37.

    Google Scholar 

  35. Kuriyama, S., Yoshikawa, M., Tominaga, K., et al. (1993) Gene therapy for the treatment of hepatoma by retroviral-mediated gene transfer of the herpes simplex virus thymidine kinase. Int. Hepatol. Commun. 1, 253–259.

    Article  Google Scholar 

  36. Kuriyama, S., Nakatani, T., Masui, K., et al. (1995) Bystander effect caused by suicide gene expression indicates the feasibility of gene therapy for hepatocellular carcinoma. Hepatology 22, 1838–1846.

    PubMed  CAS  Google Scholar 

  37. Holder, J. W., Elmore, E., and Barrett, J. C. (1993) Gap junction function and cancer. Cancer Res. 53, 3475–3485.

    PubMed  CAS  Google Scholar 

  38. Caruso, M., Panis, Y., Gagandeep, S., Houssin, D., Salzmann, J. L., and Klatzmann, D. (1993) Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc. Natl. Acad. Sci. USA 90, 7024–7028.

    Article  PubMed  CAS  Google Scholar 

  39. Vile, R. G., Nelson, J. A., Castleden, S., Chong, H., and Hart, I. R. (1994) Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res. 54, 6228–6234.

    PubMed  CAS  Google Scholar 

  40. Barba, D., Hardin, J., Sadelain, M., and Gage, F. H. (1994) Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc. Natl. Acad. Sci. USA 91, 4348–4352

    Article  PubMed  CAS  Google Scholar 

  41. Gagandeep, S., Brew, R., Green, B., et al. (1996) Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect.” Cancer Gene Ther. 3, 83–88.

    PubMed  CAS  Google Scholar 

  42. Kianmanesh, A. R., Perrin, H., Panis, Y., et al. (1997) A “distant” bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor. Hum. Gene Ther. 8, 1807–1814.

    Article  PubMed  CAS  Google Scholar 

  43. Freeman, S. M., Ramesh, R., and Marrogi, A. J. (1997) Immune system in suicide-gene therapy. Lancet 349, 2–3.

    Article  PubMed  CAS  Google Scholar 

  44. Yamamoto, S., Suzuki, S., Hoshino, A., Akimoto, M., and Shimada, T. (1997) Herpes simplex virus thymidine kinase/ganciclovir-mediated killing of tumor cell induces tumor-specific cytotoxic T cells in mice. Cancer Gene Ther. 4, 91–96.

    PubMed  Google Scholar 

  45. Ramesh, R., Munshi, A., Abboud, C. N., Marrogi, A. J., and Freeman, S. M. (1996) Expression of costimulatory molecules: B7 and ICAM up-regulation after treatment with a suicide gene. Cancer Gene Ther. 3, 373–384.

    PubMed  CAS  Google Scholar 

  46. Ramesh, R., Marrogi, A. J., Munshi, A., Abbound, C. N., and Freeman, S. M. (1996) In vivo analysis of the “bystander effect”: a cytokine cascade. Exp. Hematol. 24, 829–838.

    PubMed  CAS  Google Scholar 

  47. Colombo, B. M., Benedetti, S., Ottolenghi, S., et al. (1995) The “bystander effect”: association of U-87 cell death with ganciclovir-mediated apoptosis of nearby cells and lack of effect in athymic mice. Hum. Gene Ther. 6, 763–772.

    Article  PubMed  CAS  Google Scholar 

  48. Mullen, C. A., Anderson, L., Woods, K., Nishino, M., and Petropoulos, D. (1998) Ganciclovir chemoablation of herpes thymidine kinase suicide gene-modified tumors produces tumor necrosis and induces systemic immune responses. Hum. Gene Ther. 9, 2019–2030.

    Article  PubMed  CAS  Google Scholar 

  49. Vile, R. G., Castleden, S., Marshall, J., Camplejohn, R., Upton, C., and Chong, H. (1997) Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoral cytokine expression. Int. J. Cancer 71, 267–274.

    Article  PubMed  CAS  Google Scholar 

  50. Seder, R. A. and Paul, W. E. (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells. Ann. Rev. Immunol. 12, 635–673.

    Article  CAS  Google Scholar 

  51. Thompson, C. B. (1995) Distinct roles for the costimulatory ligands B7-1 and B7-2 in T helper cell differentiation. Cell 81, 979–982.

    Article  PubMed  CAS  Google Scholar 

  52. Felzmann, T., Ramsey, W. J., and Blaese, R. M. (1997) Characterization of the antitumor immune response generated by treatment of murine tumors with recombinant adenoviruses expressing HSVtk, IL-2, IL-6 or B7-1. Gene Ther. 4, 1322–1329.

    Article  PubMed  CAS  Google Scholar 

  53. Rogers, R. P., Ge, J.-Q., Holley-Guthrie, E., et al. (1996) Killing Epstein-Barr virus-positive B lymphocytes by gene therapy: comparing the efficacy of cytosine deaminase and herpes simplex virus thymidine kinase. Hum. Gene Ther. 7, 2235–2245.

    Article  PubMed  CAS  Google Scholar 

  54. Hall, S. J., Sanford, M. A., Atkinson, G., and Chen, S.-H. (1998) Induction of potent antitumor natural killer cell activity by herpes simplex virus-thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer. Cancer Res. 58, 3221–3225.

    PubMed  CAS  Google Scholar 

  55. Tapscott, S. J., Miller, A. D., Olson, J. M., Berger, M. S., Groudine, M., and Spence, A. M. (1994) Gene therapy of rat 9L gliosarcoma tumors by transduction with selectable genes does not require drug selection. Proc. Natl. Acad. Sci. USA 91, 8185–8189.

    Article  PubMed  CAS  Google Scholar 

  56. Freeman, S. M., Ramesh, R., Shastri, M., Munshi, A., Jensen, A. K., and Marrogi, A. J. (1995) The role of cytokines in mediating the bystander effect using HSVtk xenogeneic cells. Cancer Lett. 92, 167–174.

    Article  PubMed  CAS  Google Scholar 

  57. Bi, W., Kim, Y. G., Feliciano, E. S., et al. (1997) An HSVtk-mediated local and distant antitumor bystander effect in tumors of head and neck origin in athymic mice. Cancer Gene Ther. 4, 246–252.

    PubMed  CAS  Google Scholar 

  58. Dziarski, R. (1984) Opposing effects of xid and nu mutations on proliferative and polyclonal antibody and autoantibody responses to peptidoglycan, LPS, protein A and PWM. Immunology 53, 563–574.

    PubMed  CAS  Google Scholar 

  59. Fidler, I. J., Murray, J. L., and Kleinerman, E. S. (1991) Systemic activation of macrophages by liposomes containing immunomodulators, in Biologic Therapy of Cancer: Principles and Practice (Hellman, S., DeVita, V. T. and Jr., Rosenberg, S. A., eds.), Lippincott, Philadelphia, pp. 730–742.

    Google Scholar 

  60. Nishiyama, T., Kawamura, Y., Kawamoto, K., et al. (1985) Antineoplastic effects in rats of 5-fluorocytosine in combination with cytosine deaminase capsules. Cancer Res. 45, 1753–1761.

    PubMed  CAS  Google Scholar 

  61. Cao, G., Kuriyama, S., Gao, J., et al. (1999) Effective and safe gene therapy for colorectal carcinoma using the cytosine deaminase gene directed by the carcinoembryonic antigen promoter. Gene Ther. 6, 83–90.

    Article  PubMed  CAS  Google Scholar 

  62. Cao, G., Kuriyama, S., Cui, L., et al. (1999) Analysis of the human carcinoembryonic antigen promoter core region in colorectal carcinoma-selective cytosine deaminase gene therapy. Cancer Gene Ther. 6, 572–580.

    Article  PubMed  CAS  Google Scholar 

  63. Cao, G., Kuriyama, S., Gao, J., et al. (1999) In vivo gene transfer of a suicide gene under the transcriptional control of the carcinoembryonic antigen promoter results in bone marrow transduction but can avoid bone marrow suppression. Int. J. Oncol. 15, 107–112.

    PubMed  CAS  Google Scholar 

  64. Mullen, C. A., Coale, M. M., Lowe, R., and Blaese, R. M. (1994) Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res. 54, 1503–1506.

    PubMed  CAS  Google Scholar 

  65. Huber, B. E., Austin, E. A., Richards, C. A., Davis, S. T., and Good, S. S. (1994) Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc. Natl. Acad. Sci. USA 91, 8302–8306.

    Article  PubMed  CAS  Google Scholar 

  66. Rowley, S., Lindauer, M., Gebert, J. F., et al. (1996) Cytosine deaminase gene as a potential tool for the genetic therapy of colorectal cancer. J. Surg. Oncol. 61, 42–48.

    Article  PubMed  CAS  Google Scholar 

  67. Kuriyama, S., Kikukawa, M., Masui, K., et al. (1999) Cytosine deaminase/5-fluorocytosine gene therapy can induce efficient anti-tumor effects and protective immunity in immuno-competent mice but not in athymic nude mice. Int. J. Cancer 81, 592–597.

    Article  PubMed  CAS  Google Scholar 

  68. Kuriyama, S., Sakamoto, T., Kikukawa, M., et al. (1998) Expression of a retrovirally transduced gene under control of an internal housekeeping gene promoter does not persist due to methylation and is restored partially by 5-azacytidine treatment. Gene Ther. 5, 1299–1305.

    Article  PubMed  CAS  Google Scholar 

  69. Kuriyama, S., Masui, K., Kikukawa, M., et al. (1999) Complete cure of established murine hepatocellular carcinoma is achievable by repeated injections of retroviruses carrying the herpes simplex virus thymidine kinase gene. Gene Ther. 6, 525–533.

    Article  PubMed  CAS  Google Scholar 

  70. Uckert, W., Kammertöns, T., Haack, K., et al. (1998) Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo. Hum. Gene Ther. 9, 855–865.

    Article  PubMed  CAS  Google Scholar 

  71. Consalvo, M., Mullen, C. A., Modesti, A., et al. (1995) 5-Fluorocytosine-induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory. J. Immunol. 154, 5302–5312.

    PubMed  CAS  Google Scholar 

  72. Pierrefite-Carle, V., Baqué, P., Gavelli, A., et al. (1999) Cytosine deaminase/5-fluorocytosine-based vaccination against liver tumors: evidence of distant bystander effect. J. Natl. Cancer Inst. 91, 2014–2019.

    Article  PubMed  CAS  Google Scholar 

  73. Haack, K., Linnebacher, M., Eisold, S., Zöller, M., von mnKnebel Doeberitz, M., and Gebert, J. (2000) Induction of protective immunity against syngeneic rat cancer cells by expression of the cytosine deaminase suicide gene. Cancer Gene Ther. 7, 1357–1364.

    Google Scholar 

  74. Roszman, T., Elliott, L., and Brooks, W. (1991) Modulation of T-cell function by gliomas. Immunol. Today 12, 370–374.

    Article  PubMed  CAS  Google Scholar 

  75. Chen, S.-H., Kosai, K., Xu, B. et al. (1996) Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: sustained antitumor immunity prolongs animal survival. Cancer Res. 56, 3758–3762.

    PubMed  CAS  Google Scholar 

  76. Mullen, C. A., Petropoulos, D., and Lowe, R. M. (1996) Treatment of microscopic pulmonary metastases with recombinant autologous tumor vaccine expressing interleukin 6 and Escherichia coli cytosine deaminase suicide genes. Cancer Res. 56, 1361–1366.

    PubMed  CAS  Google Scholar 

  77. O’Malley, B. W., Cope, K. A., Chen, S. H., Li, D., Schwarta, M. R., and Woo, S. L. (1996) Combination gene therapy for oral cancer in a murine model. Cancer Res. 56, 1737–1741.

    Google Scholar 

  78. O’Malley, B. W., Jr., Sewell, D. A., Li, D., et al. (1997) The role of interleukin-2 in combination adenovirus gene therapy for head and neck cancer. Mol. Endocrinol. 11, 667–673.

    Article  Google Scholar 

  79. Coll, J.-L., Mesnil, M., Lefebvre, M.-F., Lancon, A., and Favrot, M. C. (1997) Long-term survival of immunocompetent rats with intraperitoneal colon carcinoma tumors using herpes simplex thymidine kinase/ganciclovir and IL-2 treatments. Gene Ther. 4, 1160–1166.

    Article  PubMed  CAS  Google Scholar 

  80. Santodonato, L., Ferrantini, M., Gabriele, L., et al. (1996) Cure of mice established metastatic friend leukemia cell tumors by a combined therapy with tumor cells expressing both interferon-α1 and herpes simplex thymidine kinase followed by ganciclovir. Hum. Gene Ther. 7, 1–10.

    Article  PubMed  CAS  Google Scholar 

  81. Santodonato, L., D’Agostino, G., Santini, S. M., et al. (1997) Local and systemic antitumor response after combined therapy of mouse metastatic tumors with tumor cells expressing IFN-α and HSVtk: perspectives for the generation of cancer vaccines. Gene Ther. 4, 1246–1255.

    Article  PubMed  CAS  Google Scholar 

  82. Benedetti, S., Dimeco, F., Pollo, B., et al. (1997) Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene. Hum. Gene Ther. 8, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  83. Nanni, P., De Giovanni, C., Nicoletti, G., et al. (1998) The immune response elicited by mammary adenocarcinoma cells transduced with interferon-γ and cytosine deaminase genes cures lung metastases by parental cells. Hum. Gene Ther. 9, 217–224.

    Article  PubMed  CAS  Google Scholar 

  84. Cao, X., Ju, D. W., Tao, Q., et al. (1998) Adenovirus-mediated GM-CSF gene and cytosine deaminase gene transfer followed by 5-fluorocytosine administration elicit more potent antitumor response in tumor-bearing mice. Gene Ther. 5, 1130–1136.

    Article  PubMed  CAS  Google Scholar 

  85. Okada, H., Giezeman-Smits, K. M., Tahara, H., et al. (1999) Effective cytokine gene therapy against an intracranial glioma using a retrovirally transduced IL-4 plus HSVtk tumor vaccine. Gene Ther. 6, 219–226.

    Article  PubMed  CAS  Google Scholar 

  86. Toda, M., Martuza, R. L., and Rabkin, S. D. (2001) Combination suicide/cytokine gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Ther. 8, 332–339.

    Article  PubMed  CAS  Google Scholar 

  87. Miller, P. W., Sharma, S., Stolina, M., et al. (1998) Dendritic cells augment granulocyte-macrophage colony-stimulating factor (GM-CSF)/herpes simplex virus thymidine kinase-mediated gene therapy of lung cancer. Cancer Gene Ther. 5, 380–389.

    PubMed  CAS  Google Scholar 

  88. Ju, D. W., Tao, Q., Cheng, D. S., et al. (2000) Adenovirus-mediated lymphotactin gene transfer improves therapeutic efficacy of cytosine deaminase suicide gene therapy in established murine colon carcinoma. Gene Ther. 7, 329–338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Kuriyama, S., Tsujinoue, H., Yoshiji, H. (2004). Immune Response to Suicide Gene Therapy. In: Springer, C.J. (eds) Suicide Gene Therapy. Methods in Molecular Medicine™, vol 90. Humana Press. https://doi.org/10.1385/1-59259-429-8:353

Download citation

  • DOI: https://doi.org/10.1385/1-59259-429-8:353

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-971-1

  • Online ISBN: 978-1-59259-429-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics