Skip to main content

Enzyme-Prodrug Systems

Carboxylesterase/CPT-11

  • Protocol
Suicide Gene Therapy

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 90))

Abstract

The development of enzyme-prodrug approaches for targeted treatment of human tumors has gained momentum in the last decade, especially with the advent of antibodies, viral vectors, and nonviral delivery systems that might be suitable for use in vivo. However, relatively few novel enzyme-prodrug combinations have been developed for use with these vectors. Because tumors differ in their intrinsic sensitivity to specific classes of chemotherapeutic agents, it is unlikely that any single enzyme-prodrug combination will be effective for all types of cancer. The design of additional vectors, enzymes, and prodrugs needs to be pursued. This section discusses the use of carboxylesterases (CEs) to activate the prodrug CPT-11 irinotecan, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanizawa, A., Fujimori, A., Fujimori, Y., and Pommier, Y. (1994) Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J. Natl. Cancer Inst. 86, 836–842.

    Article  PubMed  CAS  Google Scholar 

  2. Houghton, P. J., Cheshire, P. J., Hallman, J. D., 2nd, et al. (1995) Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother. Pharmacol. 36, 393–403.

    Article  PubMed  CAS  Google Scholar 

  3. Houghton, J. A., Cheshire, P. J., Hallman, J. A., et al. (1996) Evaluation of irinotecan in combination with 5-fluorouracil or etoposide in xenograft models of colon adenocarcinoma and rhabdomyosarcoma. Clin. Cancer Res. 2, 107–118.

    PubMed  CAS  Google Scholar 

  4. Bissery, M. C., Vrignaud, P., Lavelle, F., and Chabot, G. G. (1996) Preclinical antitumor activity and pharmacokinetics of irinotecan (CPT-11) in tumor-bearing mice. Ann. NY Acad. Sci. 803, 173–180.

    Article  PubMed  CAS  Google Scholar 

  5. Bissery, M. C., Vrignaud, P., Lavelle, F., and Chabot, G. G. (1996) Experimental antitumor activity and pharmacokinetics of the camptothecin analog irinotecan (CPT-11) in mice. Anticancer Drugs 7, 437–460.

    Article  PubMed  CAS  Google Scholar 

  6. Thompson, J., Zamboni, W. C., Cheshire, P. J., et al. (1997) Efficacy of oral irinotecan against neuroblastoma xenografts. Anticancer Drugs 8, 313–322.

    Article  PubMed  CAS  Google Scholar 

  7. Thompson, J., Zamboni, W. C., Cheshire, P. J., et al. (1997) Efficacy of systemic administration of irinotecan against neuroblastoma xenografts. Clin. Cancer Res. 3, 423–431.

    PubMed  CAS  Google Scholar 

  8. Baker, L., Khan, R., Lynch, T., et al. (1997) Phase II study of irinotecan (CPT-11) in advanced non-small cell lung cancer (NSCLC). Proc. Annu. Meet. Am. Soc. Clin. Oncol. 16, A1658 (abstract).

    Google Scholar 

  9. Escudier, B., Fizazi, K., Rolland, F., et al. (1997) Phase II study of irinotecan (CPT 11) in pretreated (A) or not pretreated (B) patients (pts) with advanced renal cell carcinoma. Proc. Annu. Meet. Am. Soc. Clin. Oncol. 16, A1188 (abstract).

    Google Scholar 

  10. Furman, W. L., Stewart, C. F., Poquette, C. A., et al. (1999) Direct translation of a protracted irinotecan schedule from a xenograft model to a Phase I trial in children. J. Clin. Oncol. 17, 1815–1824.

    PubMed  CAS  Google Scholar 

  11. Rivory, L. P., Haaz, M.-C., Canal, P., Lokiec, F., Armand, J.-P., and Robert, J. (1997) Pharmacokinetic interrelationships of irinotecan (CPT-11) and its three major plasma metabolites in patients enrolled in Phase I/II trials. Clin. Cancer Res. 3, 1261–1266.

    PubMed  CAS  Google Scholar 

  12. Rivory, L. P., Bowles, M. R., Robert, J., and Pond, S. M. (1996) Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem. Pharmacol. 52, 1103–1111.

    Article  PubMed  CAS  Google Scholar 

  13. Slatter, J. G., Su, P., Sams, J. P., Schaaf, L. J., and Wienkers, L. C. (1997) Bioactivation of the anticancer agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions. Drug Metab. Dispos. 25, 1157–1164.

    PubMed  CAS  Google Scholar 

  14. Humerickhouse, R., Lohrbach, K., Li, L., Bosron, W., and Dolan, M. (2000) Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res. 60, 1189–1192.

    PubMed  CAS  Google Scholar 

  15. Khanna, R., Morton, C. L., Danks, M. K., and Potter, P. M. (2000) Proficient metabolism of CPT-11 by a human intestinal carboxylesterase. Cancer Res. 60, 4725–4728.

    PubMed  CAS  Google Scholar 

  16. Morton, C. L., Wadkins, R. M., Danks, M. K., and Potter, P. M. (1999) CPT-11 is a potent inhibitor of acetylcholinesterase but is rapidly catalyzed to SN-38 by butyrylcholinesterase. Cancer Res. 59, 1458–1463.

    PubMed  CAS  Google Scholar 

  17. Petit, R. G., Rothenberg, M. L., Mitchell, E. P., Compton, L. D., and Miller, L. L. (1997) Cholinergic symptoms following CPT-11 infusion in a phase II multicenter trial of 250 mg/m2 irinotecan (CRT-11) given every two weeks. Proc. Annu. Meet. Am. Soc. Clin. Oncol. 16, A953 (abstract).

    Google Scholar 

  18. Potter, P. M., Pawlik, C. A., Morton, C. L., Naeve, C. W., and Danks, M. K. (1998) Isolation and partial characterization of a cDNA encoding a rabbit liver carboxylesterase that activates the prodrug Irinotecan (CPT-11). Cancer Res. 52, 2646–2651.

    Google Scholar 

  19. Potter, P. M., Wolverton, J. S., Morton, C. L., Whipple, D. O., and Danks, M. K. (1998) In situ subcellular localization of epitope tagged human and rabbit carboxylesterases. Cytometry 32, 223–232.

    Article  PubMed  CAS  Google Scholar 

  20. Potter, P. M., Wolverton, J. S., Morton, C. L., Wierdl, M., and Danks, M. K. (1998) Cellular localization domains of a rabbit and a human carboxylesterase: influence on irinotecan (CPT-11) metabolism by the rabbit enzyme. Cancer Res. 58, 3627–3632.

    PubMed  CAS  Google Scholar 

  21. Wadkins, R. M., Morton, C. L., Weeks, J. K., et al. (2001) Structural constraints affect the metabolism of CPT-11 by esterases. Mol. Pharmacol. 60, 355–362.

    PubMed  CAS  Google Scholar 

  22. Munger, J. S., Shi, G. P., Mark, E. A., Chin, D. T., Gerard, C., and Chapman, H. A. (1991) A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J. Biol. Chem. 266, 18,832–18,838.

    PubMed  CAS  Google Scholar 

  23. Danks, M. K., Morton, C. L., Krull, E. J., et al. (1999) Comparison of activation of CPT-11 by rabbit and human carboxylesterases for use in enzyme/prodrug therapy. Clin. Cancer Res. 5, 917–924.

    PubMed  CAS  Google Scholar 

  24. Morton, C. L., Wierdl, M., Oliver, L., et al. (2000) Activation of CPT-11 in mice: Identification and analysis of a highly effective plasma esterase. Cancer Res. 60, 4206–4210.

    PubMed  CAS  Google Scholar 

  25. Schwer, H., Langmann, T., Daig, R., Becker, A., Aslanidis, C., and Schmitz, G. (1997) Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem. Biophys. Res. Commun. 233, 117–120.

    Article  PubMed  CAS  Google Scholar 

  26. Sussman, J. L., Harel, M., Frolow, F., et al. (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872–879.

    Article  PubMed  CAS  Google Scholar 

  27. Sali, A. and Blundell, T. J. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  28. Danks, M. K., Morton, C. L., Pawlik, C. A., and Potter, P. M. (1998) Overexpression of a rabbit liver carboxylesterase sensitizes human tumor cells to CPT-11. Cancer Res. 58, 20–22.

    PubMed  CAS  Google Scholar 

  29. Rill, D., Santana, V., Roberts, W., et al. (1994) Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 84, 380–383.

    PubMed  CAS  Google Scholar 

  30. Wagner, L. M., Guichard S. M., Burger, R. Z., et al. (2002) Efficacy and toxicity of a virus-directed enzyme prodrug therapy purging method: practical assessment and application to bone marrow samples from neuroblastoma patients. Cancer Res. 62, 5001–5007.

    PubMed  CAS  Google Scholar 

  31. Meck, M., Wierdl, M., Wagner, L., et al. (2001) A VDEPT approach to purging neuroblastoma cells from hematopoeitic cells using adenovirus encoding rabbit carboxylesterase and CPT-11. Cancer Res., 61, 5083–5089.

    PubMed  CAS  Google Scholar 

  32. Iyengar, R. V., Pawlik, C. A., Krull, E. J., et al. (2001) Use of a modified ornithine decarboxylase promoter to achieve efficient c-MYC or N-MYC-regulated protein expression. Cancer Res. 61, 3045–3052.

    PubMed  CAS  Google Scholar 

  33. Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N., and Weintraub, H. (1990) Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149–1151.

    Article  PubMed  CAS  Google Scholar 

  34. Blackwood, E. M. and Eisenman, R. N. (1991) Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  35. Kretzner, L., Blackwood, E. M., and Eisenman, R. N. (1992) Myc and Max proteins possess distinct transcriptional activities. Nature 359, 426–429.

    Article  PubMed  CAS  Google Scholar 

  36. Bello-Fernandez, C. and Cleveland, J. L. (1992) c-myc transactivates the ornithine decarboxylase gene. Curr. Topics Microbiol. Immunol. 182, 445–452.

    CAS  Google Scholar 

  37. Bello-Fernandez, C., Packham, G., and Cleveland, J. L. (1993) The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc. Natl. Acad. Sci. USA 90, 7804–7808.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Danks, M.K., Potter, P.M. (2004). Enzyme-Prodrug Systems. In: Springer, C.J. (eds) Suicide Gene Therapy. Methods in Molecular Medicine™, vol 90. Humana Press. https://doi.org/10.1385/1-59259-429-8:247

Download citation

  • DOI: https://doi.org/10.1385/1-59259-429-8:247

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-971-1

  • Online ISBN: 978-1-59259-429-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics