Skip to main content

Tumor Sensitization to Purine Analogs by E. coli PNP

  • Protocol
Suicide Gene Therapy

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 90))

Abstract

This chapter describes an approach to destroying malignant cells by effectively changing the tumor phenotype through the delivery of Escherichia coli purine nucleo-side phosphorylase (PNP). In the presence of nucleoside prodrugs, this nonhuman enzyme in purine metabolism causes the death of the transfected (transduced) cells through the release of a highly potent antitumor agent. Importantly, the properties of the liberated compounds kill not only the transfected (transduced) cells but cause the efficient destruction of tumor cells that do not express the gene (i.e., bystander cells). In addition, the cytotoxic agents are active against both proliferating and nonproliferating tumor cells and, therefore, unlike other antitumor agents, this system can target the nonproliferating component of solid tumors. Many common cancers (including prostate, breast, colon, lung, brain, melanoma, pancreas, ovarian, kidney) progress to become untreatable and eventually cause death. Compounds are available that could abolish these tumors, but they are too toxic to systematically administer safely to cancer patients. We have shown that some of these compounds are remarkably potent and can abolish otherwise refractory human cancers when produced within the tumor mass by virtue of expression of E. coli PNP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao, C., Cook, W. J., Zhou, M., Koszalka, G. W., Krenitsky, T. A., and Ealick, S. E. (1997) The crystal structure of Escherichia coli purine nucleoside phosphorylase: a comparison with the human enzyme reveals a conserved topology. Structure 5(10), 1373ā€“1383.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Ealick, S. E., Rule, S. A., Carter, D. C., et al. (1990) Three-dimensional structure of human erythrocytic purine nucleoside phosphorylase at 3.2 A resolution. J. Biol. Chem. 265(3), 1812ā€“1820.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Zimmerman, T. P., Gersten, N., Ross, A. F., and Meich, R. P. (1971) Adenine as substrate for purine nucleoside phosphorlase. Can. J. Biochem. 49, 1050ā€“1054.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Jensen, K. F. and Nygaard, P. (1975) Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur. J. Biochem. 51, 253ā€“265.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Springer, C. J. and Niculescu-Duvaz, I. (2000) Prodrug-activating systems in suicide gene therapy. J. Clin. Invest. 105(9), 1161ā€“1167.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Sorscher, E. J., Peng, S., Bebok, Z., Allan, P. W., Bennett, L. L., Jr., and Parker, W. B. (1994) Tumor cell bystander killing in colonic carcinoma utilizing the E. coli Deo D gene and generation toxic purines. Gene Ther. 1, 233ā€“238.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Hughes, B. W., King, S. A., Allan, P. W., Parker, W. B., and Sorscher, E. J. (1998) Cell to cell contact is not required for bystander cell killing by E. coli purine nucleoside phosphorylase. J. Biol. Chem. 273, 2322ā€“2328.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Dionne, C. A., Camoratto, A. M., Jani, J. P., et al. (1998) Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin. Cancer Res. 4(8), 1887ā€“1898.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Sai, S., Takashi, M., Miyake, K., and Koshikawa, T. (1991) Study of growth fraction on fine needle aspirated prostatic tissue smear using monoclonal antibody Ki-67. Hinyokika Kiyoā€”Acta Urol. Japon. 37, 881ā€“886.

    CASĀ  Google ScholarĀ 

  10. Sadi, M. V. and Barrack, E. R. (1991) Determination of growth fraction in advanced prostate cancer by Ki-67immunostaining and its relationship to the time to tumor progression after hormonal therapy. Cancer 67, 3065ā€“3071.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Tay, D. L., Bhathal, P. S., and Fox, R. M. (1991) Quantitation of G0 and G1 phase cells in primary carcinomas. Antibody to M1 subunit of ribonucleotide reductase shows F1 phase restriction point block. J. Clin. Invest. 87, 519ā€“527.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Giangaspero, F., Doglioni, C., Rivano, M. T., Pileri, S., Gerdes, J., and Stein, H. (1987) Growth fraction in human brain tumors defined by the monoclonal antibody Ki-67. Acta Neuropathol. 74, 179ā€“182.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Pierard, G. E. and Pierd-Franchimont, C. (1997) Stochastic relationship between the growth fraction and vascularity of thin malignant melanomas. Eur. J. Cancer 33, 1888ā€“1892.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Crafts, D. C., Hoshino, T., and Wilson, C. B. (1977) Current status of population kinetics in gliomas. Bull. Cancer 64, 115ā€“124.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Fontanini, G., Pingitore, R., Bigini, D., et al. (1992) Growth fraction in non-small cell lung cancer estimated by proliferating cell nuclear antigen and comparison with Ki-67 labeling and DNA flow cytometry data. Am. J. Pathol. 141, 1285ā€“1290.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Vescio, R. A., Connors, K. M., Bordin, G. M., et al. (1990) The distinction of small cell and non-small cell lung cancer by growth in native-state histoculture. Cancer Res. 50, 6095ā€“6099.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Parker, W. B., Allan, P. W., Shaddix, S. C., et al. (1998) Metabolism and metabolic actions of 6-methylpurine and 2-fluoroadenine in human cells. Biochem. Pharmacol. 55, 1673ā€“1681.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Gadi, V. K., Alexander, S. D., Waud, W. R., Alan, P., Parker, W. B., and Sorscher, E. J. (2002) A long acting suicide gene toxin, 6-methyl purine, inhibits slow growing tumors after a single administration. J. Pharmacol. Exp. Ther. 304, 1280ā€“1284.

    ArticleĀ  Google ScholarĀ 

  19. Skipper, M. E., Montgomery, J. A., Tomson, J. R., and Schabel, F. M., Jr. (1959) Structure-activity relationship and cross resistance observed on a series of purine analogues against experimental neoplasm. Cancer Res. 19, 425ā€“437.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Philips, F. S., Sternberg, S. S, Hamilton, L., and Clarke, D. A. (1954) The toxic effects of 6-mercaptopurine and related compounds. Ann. NY Acad. Sci. 283.

    Google ScholarĀ 

  21. Parker, W. B., King, S. A., Allan, P. W., et al. (1997) In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase. Hum. Gene Ther. 8, 1637ā€“1644.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Bass, B. L. (1992) The dsRNA unwinding/modifying activity: Fact and fiction. Semin. Dev. Biol. 3, 425ā€“433.

    Google ScholarĀ 

  23. Clinical Gene Therapy Trial Data base. Available from http://www.wiley.com/wileychi/genmā‹Æer+Therapy&subcategory=.Ā®&start=40.

  24. Sacco, M. G., Benedetti, S., Duflotdancer, A., et al. (1996) Partial regression, yet incomplete eradication of mammary tumors in transgenic mice by retrovirally mediated HSV-TK transfer in vivo. Gene Ther. 3, 1151ā€“1156.

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. Beck, C., Cayeux, S., Lupton, S. D., Dorken, B., and Blankenstein, T. (1995) The thymidine kinase/ganciclovir-mediated ā€œsuicideā€ effect is variable in different tumor cells. Hum. Gene Ther. 6, 1525ā€“1530.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Dilber, M. S., Abedi, M. R., Christensson, B., et al. (1997) Gap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo. Cancer Res. 57, 1523ā€“1528.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Elshami A. A., Saavedra, A., Zhang, H., et al. (1996) Gap junctions play a role in the ā€œbystander effectā€ of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene Ther. 3, 85ā€“92.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Fick, J., Barker, F. N., Dazin, P., Westphale, E. M., Beyer, E. C., and Israel, M. A. (1995) The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc. Natl. Acad. Sci. USA 92, 11,071ā€“11,075.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Imaizumi, K., Hasegawa, Y., Kawabe, T., et al. (1998) Bystander tumoricidal effect and gap junctional communication in lung cancer cell lines. Am. J. Respir. Cell Mol. Biol. 18, 205ā€“212.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Freeman, S. M., Abboud, C. N., Whartenby, K. A., et al. (1993) The ā€œbystander effectā€: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274ā€“5283.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Marini, III., F.C., Nelson J. A., and Lapeyre, J. N. (1995) Assessment of bystander effect potency produced by intratumoral implantation of HSVtk-expressing cells using surrogate marker secretion to monitor tumor growth kinetics. Gene Ther. 2, 655ā€“659.

    PubMedĀ  CASĀ  Google ScholarĀ 

  32. Vile, R. G., Nelson, J. A., Castleden, S., Chong, H, and Hart, I. R. (1994) Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res. 54, 6228ā€“6234.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Caruso, M., Pham-Nguyen, K., Kwong, Y. L., et al. (1996) Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma. Proc. Natl. Acad. Sci. USA 93, 11,302ā€“11,306.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Tapscott, S. J., Miller, A. D., Olson, J. M., Berger, M. S., Groudine, M., and Spence, A. M. (1994) Gene therapy of rat 9L gliosarcoma tumors by transduction with selectable genes does not require drug selection. Proc. Natl. Acad. Sci. USA 91, 8185ā€“8189.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Lockett, L. J., Molloy, P. L., Russell, P. J., and Both, G. W. (1997) Relative efficiency of tumor cell killing in vitro by two enzyme-prodrug systems delivered by identical adenovirus vectors. Clin. Cancer Res. 3, 2075ā€“2080.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. DeVita, V. T., Hellman, S., and Rosenberg, S. A. (1997) Cancer: Principles & Practice of Oncology, 5th ed., Lippincott-Raven, Philadelphia, Vol. 2, p. 1176.

    Google ScholarĀ 

  37. Moriuchi, S., Oligino, T., Krisky, D., et al. (1998) Enhanced tumor cell killing in the presence of ganciclovir by herpes simplex virus type 1 vector-directed coexpression of human tumor necrosis factor-alpha and herpes simplex virus thymidine kinase. Cancer Res. 58, 5731ā€“5737.

    PubMedĀ  CASĀ  Google ScholarĀ 

  38. Freytag, S. O., Pogulski, K. R., Paielli, D. L., Gilbert, J. D., and Kim, J. H. (1998) A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum. Gene Ther. 9, 1323ā€“1333.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Beltinger, C., Fulda, S., Kammertoens, T., Meyer, E., Uckert, W., and Debatin, K. M. (1999) Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc. Natl. Acad. Sci. USA 69, 8699ā€“8704.

    ArticleĀ  Google ScholarĀ 

  40. Chen, S. H., Kosai, K., Xu, B., et al. (1996) Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: sustained antitumor immunity prolongs animal survival. Cancer Res. 56, 3758ā€“3762.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D. D., and Kirn, D. H. (1997) ONYX-015, and E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med. 3, 639ā€“645.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Hughes, B. W., Wells, A. H., Bebok, Z., et al. (1995) Bystander killing of melanoma cells using the human tyrosinase promoter to express the Escherichia coli purine nucleoside phosphorylase gene. Cancer Res. 55, 3339ā€“3345.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Da Costa, L. T., Jen, J., Tong-Chuan, H., Chan, T. A., Kinzler, K. W., and Vogelstein, B. (1996) Converting cancer genes into killer genes. Proc. Natl. Acad. Sci. USA 93, 4192ā€“4196.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  44. Nestler, U., Heinkelein, M., Lucke, M., et al. (1997) Foamy virus vectors for suicide gene therapy. Gene Ther. 4, 1270ā€“1277.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Martiniello-Wilks, R., Garcia-aragon, J., Daja, M. M., et al. (1998) In vivo gene therapy for prostate cancer: preclinical evaluation of two different enzyme-directed prodrug therapy systems delivered by identical adenovirus vectors. Hum. Gene Ther. 9, 1617ā€“1626.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Park, B. J., Brown, C. K., Hu, Y., et al. (1999) Augmentation of melanoma-specific gene expression using a tandem melanocyte-specific enhancer results in increased cytotoxicity of the purine nucleoside phosphorylase gene in melanoma. Hum. Gene Ther. 10, 889ā€“898.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Puhlmann, M., Gnant, M., Brown, C. K., Alexander, H. R., and Bartlett, D. L. (1999) Thymidine kinase-deleted vaccinia virus expressing purine nucleoside phosphorylase as a vector for tumor-directed gene therapy. Hum. Gene Ther. 10, 649ā€“657.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Krohne, T. U., Shankara, S., Geissler, M., et al. (2001) Mechanisms of cell death induced by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase in human hepatocellular carcinoma cells in vitro. Hepatology 34(3), 511ā€“518.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Mohr, L., Shankara, S., Yoon, S. K., et al. (2000) Gene therapy of hepatocellular carcinoma in vitro and in vivo in nude mice by adenoviral transfer of the Escherichia coli purine nucleoside phosphorylase gene. Hepatology 31(3), 606ā€“614.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Gadi, V. K., Alexander, S. D., Kudlow, J. E., Allan, P., Parker, W. B., and Sorscher, E. J. (2000) In vivo sensitization of ovarian tumors to chemotherapy by expression of E. coli purine nucleoside phosphorylase in a small fraction of tumor cells. Gene Ther. 7, 1738ā€“1743.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Secrist, J. A., Parker, W. B., Allan, P. W., et al. (1999) Gene therapy of cancer: activation of nucleoside prodrugs with E. coli purine nucleoside phosphorylase. Nucleosides Nucleotides 18, 745ā€“757.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Curlee, K.V., Parker, W.B., Sorscher, E.J. (2004). Tumor Sensitization to Purine Analogs by E. coli PNP. In: Springer, C.J. (eds) Suicide Gene Therapy. Methods in Molecular Medicineā„¢, vol 90. Humana Press. https://doi.org/10.1385/1-59259-429-8:223

Download citation

  • DOI: https://doi.org/10.1385/1-59259-429-8:223

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-971-1

  • Online ISBN: 978-1-59259-429-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics