Skip to main content

Cytochrome P450-Based Gene Therapies for Cancer

  • Protocol
Suicide Gene Therapy

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 90))

  • 626 Accesses

Abstract

Cytochrome P450 (CYP) is comprosed of a family of hemeprotein monooxygenases that catalyze reactions as diverse as the biosynthesis of steroid hormones, metabolism of fat-soluble vitamins, oxidation of unsaturated fatty acids, and metabolism of drugs, pollutants, and other xenobiotics (for a review, see ref. 1). About 55 CYP genes, grouped into 17 gene families, are present in the human genome. CYPs belonging to gene families 1, 2, and 3 are particularly active in drug and xenobiotic metabolism and are most abundantly expressed in the liver and other tissues that come in contact with foreign chemicals. Large interindividual variations in CYP expression and, consequently, CYP-dependent drug metabolism are seen in humans, as a result of both genetic and environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasler, J. A. (1999) Pharmacogenetics of cytochromes P450. Mol. Aspects Med. 20, 12ā€“24, 25ā€“137.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Kawajiri, K., Eguchi, H., Nakachi, K., Sekiya, T., and Yamamoto, M. (1996) Association of CYP1A1 germ line polymorphisms with mutations of the p53 gene in lung cancer. Cancer Res. 56, 72ā€“76.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Sladek, N. E. (1988) Metabolism of oxazaphosphorines. Pharmacol. Ther. 37, 301ā€“355.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Jounaidi, Y., Hecht, J. E., and Waxman, D. J. (1998) Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Cancer Res. 58, 4391ā€“4401.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Chang, T. K., Yu, L., Goldstein, J. A., and Waxman, D. J. (1997) Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-K m catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 7, 211ā€“221.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Harris, J. W., Rahman, A., Kim, B. R., Guengerich, F. P., and Collins, J. M. (1994) Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res. 54, 4026ā€“4035.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Crewe, H. K., Ellis, S. W., Lennard, M. S., and Tucker, G. T. (1997) Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem. Pharmacol. 53, 171ā€“178.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Shet, M. S., McPhaul, M., Fisher, C. W., Stallings, N. R., and Estabrook, R. W. (1997) Metabolism of the antiandrogenic drug (Flutamide) by human CYP1A2. Drug Metab. Dispos. 25, 1298ā€“1303.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Wei, M. X., Tamiya, T., Chase, M., et al. (1994) Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Hum. Gene Ther. 5, 969ā€“978.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Colvin, O. M. (1999) An overview of cyclophosphamide development and clinical applications. Curr. Pharm. Des. 5, 555ā€“560.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. Clarke, L. and Waxman, D. J. (1989) Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation. Cancer Res. 49, 2344ā€“2350.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Bryant, J., Clegg, A., and Milne, R. (2001) Systematic review of immunomodulatory drugs for the treatment of people with multiple sclerosis: is there good quality evidence on effectiveness and cost? J. Neurol. Neurosurg. Psychiatry 70, 574ā€“579.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Genka, S., Deutsch, J., Stahle, P. L., et al. (1990) Brain and plasma pharmacokinetics and anticancer activities of cyclophosphamide and phosphoramide mustard in the rat. Cancer Chemother. Pharmacol. 27, 1ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Levine, E. S., Friedman, H. S., Griffith, O. W., Colvin, O. M., Raynor, J. H., and Lieberman, M. (1993) Cardiac cell toxicity induced by 4-hydroperoxycyclophosphamide is modulated by glutathione. Cardiovasc. Res. 27, 1248ā€“1253.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Schuster, J. M., Friedman, H. S., Archer, G. E., et al. (1993) Intraarterial therapy of human glioma xenografts in athymic rats using 4-hydroperoxycyclophosphamide. Cancer Res. 53, 2338ā€“2343.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Huang, Z., Roy, P., and Waxman, D. J. (2000) Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem. Pharmacol. 59, 961ā€“972.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Chang, T. K., Weber, G. F., Crespi, C. L., Waxman, D. J., (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 53, 5629ā€“5637.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Moolten, F. L., Wells, J. M., Heyman, R. A., and Evans, R. M. (1990) Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene. Hum. Gene Ther. 1, 125ā€“134.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Takamiya, Y., Short, M. P., Ezzeddine, Z. D., Moolten, F. L., Breakefield, X. O., and Martuza, R. L. (1992) Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J. Neurosci. Res. 33, 493ā€“503.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Moolten, F. L. and Wells, J. M. (1990) Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J. Natl. Cancer Inst. 82, 297ā€“300.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Chung, R. Y. and Chiocca, E. A. (1998) Gene therapy for tumors of the central nervous system. Surg. Oncol. Clin. North Am. 7, 589ā€“602.

    CASĀ  Google ScholarĀ 

  22. Wildner, O. (1999) In situ use of suicide genes for therapy of brain tumours. Ann. Med. 31, 421ā€“429.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Harsh, G. R., Deisboeck, T. S., Louis, D. N., et al. (2000) Thymidine kinase activation of ganciclovir in recurrent malignant gliomas: a gene-marking and neuropathological study. J. Neurosurg. 92, 804ā€“811.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Chen, L. and Waxman, D. J. (1995) Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res. 55, 581ā€“589.

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. Chen, L., Waxman, D. J., Chen, D., and Kufe, D. W. (1996) Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene. Cancer Res. 56, 1331ā€“1340.

    PubMedĀ  CASĀ  Google ScholarĀ 

  26. Freeman, S. M., Abboud, C. N., Whartenby, K. A., et al. (1993) The ā€œbystander effectā€ tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274ā€“5283.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Culver, K. W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E. H., and Blaese, R. M. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550ā€“1502.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Tapscott, S. J., Miller, A. D., Olson, J. M., Berger, M. S., Groudine, M., and Spence, A. M. (1994) Gene therapy of rat 9L gliosarcoma tumors by transduction with selectable genes does not require drug selection. Proc. Natl. Acad. Sci. USA 91, 8185ā€“8189.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Barba, D., Hardin, J., Sadelain, M., and Gage, F. H. (1994) Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc. Natl. Acad. Sci. USA 91, 4348ā€“4352.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Felzmann, T., Ramsey, W. J., and Blaese, R. M. (1997) Characterization of the antitumor immune response generated by treatment of murine tumors with recombinant adenoviruses expressing HSVtk, IL-2, IL-6 or B7-1. Gene Ther. 4, 1322ā€“1329.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Mullen, C. A., Coale, M. M., Lowe, R., and Blaese, R. M. (1994) Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res. 54, 1503ā€“1506.

    PubMedĀ  CASĀ  Google ScholarĀ 

  32. Mullen, C. A., Kilstrup, M., and Blaese, R. M. (1992) Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc. Natl. Acad. Sci. USA 89, 33ā€“37.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Wei, M. X., Tamiya, T., Rhee, R. J., Breakefield, X. O., and Chiocca, E. A. (1995) Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm. Clin Cancer Res. 1, 1171ā€“1177.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Ichikawa, T., Petros, W. P., Ludeman, S. M., et al. (2001) Intraneoplastic polymer-based delivery of cyclophosphamide for intratumoral bioconversion by a replicating oncolytic viral vector. Cancer Res. 61, 864ā€“868.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Kuriyama, S., Masui, K., Sakamoto, T., et al. (1998) Bystander effect caused by cytosine deaminase gene and 5-fluorocytosine in vitro is substantially mediated by generated 5-fluorouracil. Anticancer Res. 18, 3399ā€“3406.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Connors, T. A. (1995) The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther. 2, 702ā€“709.

    PubMedĀ  CASĀ  Google ScholarĀ 

  37. Ram, Z., Culver, K. W., Oshiro, E. M., et al. (1997) Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nature Med. 3, 1354ā€“1361.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Puumalainen, A. M., Vapalahti, M., Agrawal, R. S., et al. (1998) Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Hum. Gene Ther. 9, 1769ā€“1774.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Smith, E. R. and Chiocca, E. A. (2000) Oncolytic viruses as novel anticancer agents: turning one scourge against another. Expert Opin. Invest. Drugs 9, 311ā€“327.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Chung, R. Y., Saeki, Y., and Chiocca, E. A. (1999) B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. J. Virol. 73, 7556ā€“7564.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Suzuki, K., Fueyo, J., Krasnykh, V., Reynolds, P. N., Curiel, D. T., and Alemany, R. (2001) A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin. Cancer Res. 7, 120ā€“126.

    PubMedĀ  CASĀ  Google ScholarĀ 

  42. Aghi, M., Chou, T. C., Suling, K., Breakefield, X. O., and Chiocca, E. A. (1999) Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res. 59, 3861ā€“3865.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Ichikawa, T. and Chiocca, E. A. (2001) Comparative analyses of transgene expression mediated by a replication-conditional vs. defective viral vector. Cancer Res. 61, 5336ā€“5339.

    PubMedĀ  CASĀ  Google ScholarĀ 

  44. Jacobson, J. G., Leib, D. A., Goldstein, D. J., et al. (1989) A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173, 276ā€“283.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Coen, D. M., Goldstein, D. J., and Weller, S. K. (1989) Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir. Antimicrob. Agents Chemother. 33, 1395ā€“1399.

    PubMedĀ  CASĀ  Google ScholarĀ 

  46. Rampling, R., Cruickshank, G., Papanastassiou, V., et al. (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 7, 859ā€“866.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Markert, J. M., Medlock, M. D., Rabkin, S. D., et al. (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 7, 867ā€“874.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Chase, M., Chung, R. Y., and Chiocca, E. A. (1998) An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nature Biotechnol. 16, 444ā€“448.

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Ikeda, K., Ichikawa, T., Wakimoto, H., et al. (1999) Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nature Med. 5, 881ā€“887.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Ikeda, K., Wakimoto, H., Ichikawa, T., et al. (2000) Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J. Virol. 74, 4765ā€“4775.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Aghi, M., Kramm, C. M., Chou, T. C., Breakefield, X. O., and Chiocca, E. A. (1998) Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J. Natl. Cancer Inst. 90, 370ā€“380.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Chou, T. C., Motzer, R. J., Tong, Y., and Bosl, G. J. (1994) Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J. Natl. Cancer Inst. 86, 1517ā€“1524.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Andersson, B. S., Sadeghi, T., Siciliano, M. J., Legerski, R., and Murray, D. (1996) Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother. Pharmacol. 38, 406ā€“416.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Li, L., Keating, M. J., Plunkett, W., and Yang, L. Y. (1997) Fludarabine-mediated repair inhibition of cisplatin-induced DNA lesions in human chronic myelogenous leukemia-blast crisis K562 cells: induction of synergistic cytotoxicity independent of reversal of apoptosis resistance. Mol. Pharmacol. 52, 798ā€“806.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Ilsley, D. D., Lee, S. H., Miller, W. H., and Kuchta, R. D. (1995) Acyclic guanosine analogs inhibit DNA polymerases alpha, delta, and epsilon with very different potencies and have unique mechanisms of action. Biochemistry 34, 2504ā€“2510.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Kammertoens, T., Gelbmann, W., Karle, P., et al. (2000) Combined chemotherapy of murine mammary tumors by local activation of the prodrugs ifosfamide and 5-fluorocytosine. Cancer Gene Ther. 7, 629ā€“636.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Anon. (1998) Gliadel wafers for treatment of brain tumors. Med. Lett. Drugs Ther. 40, 92.

    Google ScholarĀ 

  58. Chen, L., Yu, L. J., and Waxman, D. J. (1997) Potentiation of cytochrome P450/cyclo-phosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Cancer Res. 57, 4830ā€“4837.

    PubMedĀ  CASĀ  Google ScholarĀ 

  59. Jounaidi, Y. and Waxman, D. J. (2000) Combination of the bioreductive drug tirapazamine with the chemotherapeutic prodrug cyclophosphamide for P450/P450-reductase-based cancer gene therapy. Cancer Res. 60, 3761ā€“3769.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Huang, Z., Raychowdhury, M. K., and Waxman, D. J. (2000) Impact of liver P450 reductase suppression on cyclophosphamide activation, pharmacokinetics and antitumoral activity in a cytochrome P450-based cancer gene therapy model. Cancer Gene Ther. 7, 1034ā€“1042.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Huang, Z. and Waxman, D. J. (2001) Modulation of cyclophosphamide-based cytochrome P450-based gene therapy using liver P450 inhibitors. Cancer Gene Ther. 8, 450ā€“458.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Browder, T., Butterfield, C. E., Kraling, B. M., et al. (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878ā€“1886.

    PubMedĀ  CASĀ  Google ScholarĀ 

  63. Jounaidi, Y. and Waxman, D. J. (2001) Frequent, moderate-dose cyclophosphamide administration improves the efficacy of cytochrome P-450/cytochrome P-450 reductasebased cancer gene therapy. Cancer Res. 61, 4437ā€“4444.

    PubMedĀ  CASĀ  Google ScholarĀ 

  64. Lohr, M., Muller, P., Karle, P., et al. (1998) Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450. Gene Ther. 5, 1070ā€“1078.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Griffiths, L., Binley, K., Iqball, S., et al. (2000) The macrophageā€”a novel system to deliver gene therapy to pathological hypoxia. Gene Ther. 7, 255ā€“2562.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Rainov, N. G., Dobberstein, K. U., Sena-Esteves, M., et al. (1998) New prodrug activation gene therapy for cancer using cytochrome P450 4B1 and 2-aminoanthracene/4-ipomeanol. Hum Gene Ther. 9, 1261ā€“1273.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. McCarthy, H. O., Yakkundi, A., McErlane, V., et al. (2003) Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. Cancer Gene Ther. 10, 40ā€“48.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. Thatcher, N. J., Edwards, R. J., Lemoine, N. R., Doehmer, J., and Davies, D. S. (2000) The potential of acetaminophen as a prodrug in gene-directed enzyme prodrug therapy. Cancer Gene Ther. 7, 521ā€“525.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Lohr, M., Hoffmeyer, A., Kroger, J., et al. (2001) Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet 357, 1591ā€“1592.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Schwartz, P. S. and Waxman, D. J. (2001) Cyclophosphamide induces caspase 9-dependent apoptosis in 9L tumor cells. Mol. Pharmacol. 60, 1268ā€“1279.

    PubMedĀ  CASĀ  Google ScholarĀ 

  71. Antonio Chiocca, E. (2002) Oncolytic viruses. Nat. Rev. Cancer 2, 938ā€“950.

    Google ScholarĀ 

  72. Wakimoto, H., Ikeda, K., Abe T., et al. (2002) The complement response against an oncolytic virus is species-specific in its activation pathways. Mol. Ther. 5, 275ā€“282.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Wakimoto, H., Johnson, P. R., Knipe, D. M., Chiocca, E. A. (2003) Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther. 10, 983ā€“990.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Chiocca, E.A., Waxman, D.J. (2004). Cytochrome P450-Based Gene Therapies for Cancer. In: Springer, C.J. (eds) Suicide Gene Therapy. Methods in Molecular Medicineā„¢, vol 90. Humana Press. https://doi.org/10.1385/1-59259-429-8:203

Download citation

  • DOI: https://doi.org/10.1385/1-59259-429-8:203

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-971-1

  • Online ISBN: 978-1-59259-429-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics