Skip to main content

Introduction to the Background, Principles, and State of the Art in Suicide Gene Therapy

  • Protocol
Suicide Gene Therapy

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 90))

Abstract

Chemotherapy is widely used with surgery and radiotherapy for the treatment of malignant disease. Selectivity of most drugs for malignant cells remains elusive. Unfortunately, an insufficient therapeutic index, a lack of specificity, and the emergence of drug-resistant cell subpopulations often hamper the efficacy of drug therapies. Despite the significant progress achieved by chemotherapy in the treatment of disseminated malignancies, the prognosis for solid tumors remains poor. A number of specific difficulties are associated with the treatment of solid tumors, where the access of drugs to cancer cells is often limited by poor, unequal vascularization and areas of necrosis. The histological heterogeneity of the cell population within the tumor is another major drawback. Attempts to target therapies to tumors have been addressed by using prodrugs activated in tumors by elevated selective enzymes and are described in Chapter 27. An alternative strategy that use antibodies to target tumors with foreign enzymes that subsequently activate prodrugs is described in Chapter 26.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marais, R., Spooner, R. A., Light, Y., Martin, J., and Springer, C. J. (1996) Gene-directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Res. 56, 4735ā€“4742.

    PubMedĀ  CASĀ  Google ScholarĀ 

  2. Bridgewater, G., Springer, C. J., Knox, R., Minton, N., Michael, P., and Collins, M. (1995) Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur. J. Cancer 31A, 2362ā€“2370.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Huber, B. E., Richards, C. A., and Austin, E. A. (1995) VDEPT; an enzyme/prodrug gene therapy approach for the treatment of metastatic colorectal cancer. Adv. Drug Delivery Rev. 17, 279ā€“292.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Eaton, J. L., Perry, M. J. A., Todryk, S. M., et al. (2001) Genetic prodrug activation therapy (GPAT) in two rat prostate models generates an immune bystander effect and can be monitored by magnetic resonance techniques. Gene Ther. 8, 557ā€“567.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Hermiston, T. (2000) Gene-delivery from replication-selective viruses: arming guided missiles in the war against cancer. J. Clin. Invest. 105, 1169ā€“1172.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Roth, J. A. and Cristiano, R. G. (1997) Gene therapy for cancer: what have we done and where are we going? J. Natl. Cancer Inst. 89, 21ā€“30.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Niculescu-Duvaz, I., Spooner, R., Marais, R., and Springer, C. J. (1998) Gene-directed enzyme prodrug therapy. Bioconj. Chem. 9, 4ā€“22.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Springer, C. J. and Niculescu-Duvaz, I. (1999) Patent property of prodrug involving gene therapy (1996ā€“1999). Exp. Opin. Ther. Patents 9, 1381ā€“1388.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Bilbao, G., Contreras, J. L., GĆ³mez-Navarro, J., and Curiel, D. T. (1998) Improving adenoviral vectors for cancer gene therapy. Tumor Target. 3, 59ā€“79.

    CASĀ  Google ScholarĀ 

  10. Nguyen, J. T., Wu, P., Clouse, M. E., Hlatky, L., and Terwilliger, E. F. (1998) Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor stratergy. Cancer Res. 58, 5673ā€“5677.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. Robbins, P. D. and Ghivizzani, S. C. (1998) Viral vectors for gene therapy. Pharm. Ther. 80, 35ā€“47.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Zhang, W. W. (1999) Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther. 7, 113ā€“138.

    ArticleĀ  Google ScholarĀ 

  13. Curiel, D. T., Gerritsen, W. R. and Krul, M. R. (2000) Progress in cancer gene therapy. Cancer Gene Ther. 7, 1197ā€“1199.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Roth, M. G. and Curiel, D. T. (2000) Toward the optimal vector for prostate cancer gene therapy; a CaPCURE meeting report. Cancer Gene Ther. 7, 1507ā€“1510.

    ArticleĀ  Google ScholarĀ 

  15. Kirn, D. (2001) Clinical research results with dI 1520 (ONYX-015), a replication selective adenovirus for the treatment of cancer: what have we learned? Gene Ther. 8, 89ā€“98.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Miller, A. D. (1998) Cationic liposomes for gene therapy. Angew. Chem. Int. Ed. 37, 1768ā€“1785.

    ArticleĀ  Google ScholarĀ 

  17. Schatzlein, A. G. (2001) Non-viral vectors in cancer gene therapy: principles and progress. Anti-Cancer Drug Des. 12, 275ā€“304.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Springer, C. J. and Niculescu-Duvaz, I. (2000) Prodrug-activating systems in suicide gene therapy. J. Clin. Investig. 105, 1161ā€“1167.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Encell, L. P., Landis, D. M. and Loeb, L. A. (1999) Improving enzymes for gene therapy. Nature Biotechnol. 17, 143ā€“147.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Mesnil, M. and Yamasachi, H. (2000) Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communications. Cancer Res. 60, 3989ā€“3999.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Denny, W. A. and Wilson, W. R. (1998) The design of selectively-activated anti-cancer prodrugs for use in antibody-directed and gene-directed enzyme prodrugs therapies. J. Pharm. Pharmacol. 50, 387ā€“394.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Niculescu-Duvaz, I., Friedlos, F., Niculescu-Duvaz, D., Davies, L., and Springer, C. J. (1999) Prodrugs for antibody-and gene-directed enzyme prodrug therapies (ADEPT and GDEPT). Anticancer Drug Des. 14, 517ā€“538.

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Springer, C. J. and Niculescu-Duvaz, I. (2002) Gene-directed enzyme prodrug therapy, in Anticancer Drug Development (Baguley, B., ed.), Academic, New York, pp. 137ā€“135.

    Google ScholarĀ 

  24. Marais, R., Spooner, R. A., Stribbling, S. M., Light, Y., Martin, J., and Springer, C. J. (1997) A cell surface tethered enzyme improves efficiency in gene-directed enzyme prodrug therapy. Nature Biotechnol. 15, 1373ā€“1377.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Loimas, S., Toppinen, M.-R., Visakorpi, T., Janne, J., and Wahlfors, D. (2001) Human prostate carcinoma cells as target for herpes simplex virus thymidine kinase-mediated suicide gene therapy. Cancer Gene Ther. 8, 137ā€“144.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Jones, R. K., Pope, I. M., Kinsella, A. R., Watson, A. J. M., and Christmas, S. E. (2000) Combined suicide and granulocyte-macrophage colony-stimulating factor gene therapy induces complete tumor regression and generates antitumor immunity. Cancer Gene Ther. 7, 1519ā€“1528.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Walling, H. W., Swarthout, G. T., and Culver, K. W. (2000) Bystander-mediated regression of osteosarcoma via retroviral transfer of the herpes simplex virus thymidine kinase and human interleukin-2 genes. Cancer Gene Ther. 7, 187ā€“196.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Howard, B. D., Boenicke, L., Schniewind, B., Henne-Bruns, D., and Kalthoff, H. (2000) Transduction of human pancreatic tumor cells with vesicular stomatitis virus G-pseudotyped retroviral vectors containing a herpes simplex virus thymidine kinase mutant gene enhances bystander effects and sensitivity to ganciclovir. Cancer Gene Ther. 7, 927ā€“938.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Sandmair, A.-M., Turunen, M., Tyynela, K., et al. (2000) Herpes simplex virus thymidine kinase gene therapy in experimental rat BT4C glioma model: effect of the percentage of thymidine kinase-positive glioma cells on treatment effect, survival time, and tissue reactions. Cancer Gene Ther. 7, 413ā€“421.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Kruse, C. A., Lamb, C., Hogan, S., Russell Smiley, W., Kleinschmidt-DeMasters, B., and Burrows, F. G. (2000) Purified herpes simplex thymidine kinase retroviral particles. II. Influence of clinical parameters and bystander killing mechanisms. Cancer Gene Ther. 7, 118ā€“127.

    Google ScholarĀ 

  31. Hamel, W., Zirkel, D., Mehdorn, H. M., Westphal, M., and Israel, M. A. (2001) E-5-(2-bromovinyl)-2ā€²-deoxyuridine potentiates ganciclovir-mediated cytotoxicity on herpes simplex virus-thymidine kinase-expressing cells. Cancer Gene Ther. 8, 388ā€“396.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Grignet-Debrus, C., Cool, V., Baudson, N., et al. (2000) Comparative in vitro and in vivo cytotoxic activity of (E)-5-(2-bromovinyl)-2ā€²-deoxyuridine (BVDU) and its arabinosyl derivative, (E)-5-(2-bromovinyl)-1-Ī²-d-arabinofuranosyluracil (BVaraU), against tumor cells expressing either the Varicella zoster or the Herpes simplex virus thymidine kinase. Cancer Gene Ther. 7, 215ā€“223.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Erbs, P., Regulier, E., Kintz, J., et al. (2000) In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res. 60, 3813ā€“3822.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Bentires-Alj, M., Helin, A.-C., Lechanteur, C., et al. (2000) Cytosine deaminase suicide gene therapy for peritoneal carcinomatosis. Cancer Gene Ther. 7, 20ā€“26.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Spooner, R. A., Maycroft, K. A., Paterson, H., Friedlos, F., Springer, C. J., and Marais, R. (2001) Appropriate subcellular location of prodrug-activating enzymes has important consequences for suicide gene therapy. Int. J. Cancer 93, 123ā€“130.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Westphal, E.-M., Ge, J., Catchpole, J. R., Ford, M., and Kennedy, S. C. (2000) The nitroreductase/CB1954 combination in Eptein-Barr virus-positive B cell lines: induction of bystander killing in vitro and in vivo. Cancer Gene Ther. 7, 97ā€“106.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Tatcher, N. J., Edwards, R. J., Lemoine, N. R., Doehmer, J., and Davies, D. S. (2000) The potential of acetaminophen as a prodrug in gene-directed enzyme therapy. Cancer Gene Ther. 7, 521ā€“525.

    ArticleĀ  Google ScholarĀ 

  38. Heine, D., Muller, R., and Brusselbach, S. (2001) Cell surface display of a lysosomal enzyme for extra-cellular gene-directed enzyme prodrug therapy. Gene Ther. 8, 1005ā€“1010.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Hamstra, D. A., Page, M., Maybaum, J., and Rehemtulla, A. (2000) Expression of endog-enously activated secreted or cell surface carboxypeptidase A sensitizes tumor cells to methotrexate-Ī±-peptide prodrugs. Cancer Res. 60, 657ā€“665.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Stribbling, S. M., Friedlos, F., Martin, J., et al. (2000) Regressions of established breast cancer xenografts by carboxypeptidase G2 suicide gene therapy and the prodrug CMDA are due to a bystander effect. Human Gene Ther. 11, 285ā€“292.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Greco, O., Folkes, L. K., Wardman, P., Tozer, G. M., and Dachs, G. U. (2000) Development of a novel enzyme/prodrug combination for gene therapy of cancer: horseradish peroxidase/indole-3-acetic acid. Cancer Gene Ther. 7, 1414ā€“1420.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Simonova, M., Wall, A., Weissleder, R., and Bogdanov, A. (2000). Tyrosinase mutants are capable of prodrug activation in transfected non-melanotic cells. Cancer Res. 60, 6656ā€“6662.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Kawamura, K., Tasaki, K., Hamada, H., Takenaga, K., Sakiyama, S., and Tagawa, M. (2000) Expression of Escherichia coli uracil phosphoribosyltransferase gene in murine colon carcinoma cells augments the antitumoral effect of 5-fluorouracil and induces protective immunity. Cancer Gene Ther. 7, 637ā€“643.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Cuq, P., Rouquet, C., Evrard, A., Ciccolini, J., Vian, L., and Cano, J.-P. (2001) Fluoropyrimidine sensitivity of human MCF-7 breast cancer cells stably transfected with human uridine phosphorylase. Br. J. Cancer 84, 1677ā€“1680.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Weyel, D., Sedlacek, H. H., Muller, R., and Brusselbach, S. (2000) Secreted human Ī²-glucuronidase: a novel tool for gene-directed enzyme prodrug therapy. Gene Ther. 7, 224ā€“231.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Black, M. E., Newcomb, T. G., Wilson, H. M., and Loeb, L. A. (1996) Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl. Acad. Sci. USA 93, 3525ā€“3529.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Black, M., Kokoris, M. S., and Sabo, P. (2001) Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing. Cancer Res. 61, 3022ā€“3026.

    PubMedĀ  CASĀ  Google ScholarĀ 

  48. Blanche, F., Cameron, B., Couder, M., and Crouzet, J. (1997). Enzymes Combinations for Destroying Proliferative Cells, US Patent W09735024, Rhone-Poulenc Roerer, p. 1ā€“61.

    Google ScholarĀ 

  49. Chen, L., Yu, L. J., and Waxman, D. J. (1997) Potentiation of cytochrome P450/cyclo-phosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Cancer Res. 57, 4830ā€“4837.

    PubMedĀ  CASĀ  Google ScholarĀ 

  50. Kim, Y. G., Bi, W., Feliciano, E. S., Drake, R. R., and Stambrook, P. J. (2000) Ganciclovir-mediated cell killing and bystander effect is enhanced in cells with two copies of the herpes simplex virus thymidine kinase. Cancer Gene Ther. 7, 240ā€“246.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Kammertoens, T., Gelbmann, W., Karle, P., et al. (2000) Combined chemotherapy of murine mammary tumors by local activationof the prodrug ifosfamide and 5-fluorocytosine. Cancer Gene Ther. 7, 629ā€“636.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Rogulski, K. R., Wing, M. S., Paielli, D. L., Gilbert, J. D., Kim J. H., and Freytag, S. O. (2000) Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Human Gene Ther. 11, 67ā€“76.

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Toda, M., Martuza, R. L., and Rabkin, S. D. (2001) Combination suicide/cytokine gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Ther. 8, 332ā€“339.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Candotti, F., Agbaria, R., Mullen, C. A., et al. (2000) Use of a herpes thymidine kinase/neomycin phosphotransferase chimeric gene for metabolic suicide gene therapy. Cancer Gene Ther. 7, 574ā€“580.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Thust, R., Tomicic, M., Klocking, R., Voutilainen, N., Wutzler, P., and Kaina, B. (2000) Comparison of the genotoxic and apoptosis-inducing properties of ganciclovir and penciclovir in chinese hamster ovary cells transfected with the thymidine kinase gene of herpes simplex virus-1: implication for gene therapeutic approaches. Cancer Gene Ther. 7, 107ā€“117.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Hasegawa, Y., Nishiyama, Y., Imaizumi, K., et al. (2000) Avoidance of bone marrow suppression using A-5021 as a nucleoside analog for retrovirus-mediated herpes simplex virus type I thymidine kinase gene therapy. Cancer Gene Ther. 7, 557ā€“562.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Hayashi, K., Hayashi, T., Sun, H.-D., and Takeda, I. (2000) Potentiation of ganciclovir toxicity in the herpes simplex virus thymidine kinase/ganciclovir administration system by ponicidin. Cancer Gene Ther. 7, 45ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. McMasters, R. A., Wilbert, T. N., Jones, K. E., et al. (2000) Two-drug combinations that increase apoptosis and modulate Bak and Bcl-Xl expression in human colon tumor cell lines transduced with herpes simplex virus thymidine kinase. Cancer Gene Ther. 7, 563ā€“573.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Rubsam, L. Z., Davidson, L., and Shewach, D. S. (1998) Superior cytotoxicity with gancyclovir compared with acyclovir and 1-Ī²-d-arabinofuranosylthymine in herpes simplex virus-thymidine kinase-expressing-cells: a novel paradigm for cell killing. Cancer Res. 58, 3873ā€“3882.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Boucher, P. D., Ostruszka, L. J., and Shewach, D. S. (2000) Synergistic enhancement of herpes simplex virus thymidine kinase/ganciclovir mediated cytotoxicity by hydroxyurea. Cancer Res. 60, 1631ā€“1636.

    PubMedĀ  CASĀ  Google ScholarĀ 

  61. Huang, Z., Raychowdhury, K., and Waxman, D. J. (2000) Impact of liver P450 reductase suppression on cyclophosphamide activation, pharmacokinetics and antitumoral activity in a cytochrom P450-based cancer gene therapy model. Cancer Gene Ther. 7, 1034ā€“1042.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Jounaidi, Y. and Waxman, D. J. (2000) Combination of the bioreductive drug tirapazamine with the chemotherapeutic prodrug cyclophosphamide for P450/P450-reductase-based cancer gene therapy. Cancer Res. 60, 3761ā€“3769.

    PubMedĀ  CASĀ  Google ScholarĀ 

  63. Kanyama, H., Tomita, N., Yamano, T., et al. (2001) Usefulness of repeated intratumoral gene transfer using hemagglutinating virus of Japan-liposome method for cytosine deaminase suicide gene therapy. Cancer Res. 61, 14ā€“18.

    PubMedĀ  CASĀ  Google ScholarĀ 

  64. Jounaidi, Y. and Waxman, D. J. (2001) Frequent, moderate dose cyclophosphamide administration improves the efficacy of cytochrome P-450/cytochrome P-450 reductase based cancer gene therapy. Cancer Res. 61, 4437ā€“4444.

    PubMedĀ  CASĀ  Google ScholarĀ 

  65. Brust, D., Feden, J., Farnsworth, J., Amir, C., Broaddus, W. C., and Valerie, K. (2000) Radiosensitization of rat glioma with bromodeoxycytidine and adenovirus expressing herpes simplex virus-thymidine kinase delivered by slow, rate-controlled positive pressure infusion. Cancer Gene Ther. 7, 778ā€“788.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Valerie, K., Brust, D., Farnsworth, J., et al. (2000) Improved radiosensitization of rat glioma cells with adenovirus-expressed mutant herpes simplex virus-thymidine kinase in combination with acyclovir. Cancer Gene Ther. 7, 879ā€“884.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Valerie, K., Hawkins, W., Farnsworth, J., et al. (2001) Substantially improved in vivo radiosensitization of rat glioma with mutant HSV-TK and acyclovir. Cancer Gene Ther. 8, 3ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. Kawashita, Y., Ohtsuru, A., Kaneda, Y., et al. (1999) Regression of hepatocelluar carcinoma in vitro and in vivo by radiosensitising suicide gene therapy under the inducible and spatial control of radiation. Hum. Gene Ther. 10, 1509ā€“1519.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Nuyts, S., Theys, J., Landuyt, W., Van Mellaert, L., Lambin, P., and Anne, J. (2001) Increasing specificity of anti-tumour therapy: cytotoxic proteins delivery by non-pathogenic Clostridia under regulation of radio-induced promoter. Anticancer Res. 21, 857ā€“862.

    PubMedĀ  CASĀ  Google ScholarĀ 

  70. Nuyts, S., Van Mellaert, L., Theys, J., Landuyt, W., Lambin, P., and Anne, J. (2001) The use of radiation-induced bacterial promoters in anaerobic-conditions: a means to control gene expression in Clostridium-mediated gene therapy. Radiat. Res. 155, 716ā€“723.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. Steffens, S., Frank, S., Fisher, U., et al. (2000) Enhanced green fluorescent proteinfusion proteins of herpes simplex virus type 1 thymidine kinase and cytochrome P450 4B1: applications for prodrug-activating gene therapy. Cancer Gene Ther. 7, 806ā€“812.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Tjuvajev, J.G., Finn, R., Watanabe, K., et al. (1996) Noninvasive imaging of herpes simplex virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087ā€“4095.

    PubMedĀ  CASĀ  Google ScholarĀ 

  73. Tjuvajev, J.G., Avril, N., Oku, T., et al. (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 58, 4333ā€“4341.

    PubMedĀ  CASĀ  Google ScholarĀ 

  74. Yagoubi, S. S., Wu, L., Liang, Q., et al. (2001) Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther. 8, 1072ā€“1080.

    ArticleĀ  Google ScholarĀ 

  75. Brust, P., Haubner, R., Friedrich, A., et al. (2001) Comparison of [18F]FHPG and [124/125I]FIAU for imaging herpes simplex virus type 1 thymidine kinase gene expression. Eur. J. Nucl. Med 28, 721ā€“729.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Huber, B. E., Austin, E. A., Richards, C. A., Davis, S. T., and Good, S. S. (1994) Metabolism of 5-fluorocytidine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc. Natl. Acad. Sci. USA 91, 8302ā€“8306.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. Imaizumi, K., Hasegawa, Y., Kawabe, T., Emi, N., Saito, H., Naruse, K., and Shimokata, K. (1998) Bystander tumoricidal effect and gap junctional communication in lung cancer cells. Am. J. Respir. Cell Mol. Biol. 18, 205ā€“212.

    PubMedĀ  CASĀ  Google ScholarĀ 

  78. Wygoda, M. R., Wilson, M. R., Davis, M. A., Trosko, J. E., Rehemtulla, A., and Lawrence, T. S. (1997) Protection of herpes simplex virus thymidine kinase-transduced cells from ganciclovir-mediated cytotoxicityby bystander cells: the good Samaritan effect. Cancer Res. 57, 1699ā€“1703.

    PubMedĀ  CASĀ  Google ScholarĀ 

  79. Andrade-Rosental, A. F., Rosental, R., Hopperstad, M. D., Wu, J. K., Vrionis, F. D., and Spray, D. C. (2000) Gap junctions: the ā€œkiss of deathā€ and the ā€œkiss of life.ā€ Brain Res. Rev. 32, 308ā€“315.

    ArticleĀ  Google ScholarĀ 

  80. Touraine, R. L., Vahanian, N., Ramsey, W. J., and Blaese, R. M. (1998) Enhancement of the herpes simplex virus thymidine kinase/ganciclovir bystander effect and its antitumor efficacy in vivo by pharmacologic manipulation of gap junctions. Hum. Gene Ther. 9, 2385ā€“2391.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  81. Touraine, R. L., Ishii-Morita, H., Ramsey, W. J., and Blaese, R. M. (1998) The bystander effect in the HSVtk/ganciclovir system and its relation to gap junctional communication. Gene Ther. 5, 1705ā€“1711.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  82. Grignet-Debrus, C., Cool, V., Baudson, N., Velu, T., and Calberg-Bacq, C.-M. (2000) The role of cellular-and prodrug-associated factors in the bystander effect induced by the Varicella zoster and Herpes simplex viral thymidine kinases in suicide gene therapy. Cancer Gene Ther. 7, 1456ā€“1468.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  83. Kaneko, Y. and Tsukamoto, A. (1995) Gene therapy of hepatoma: bystander effect s and non-apoptotic cell death induced by thymidine kinase and ganciclovir. Cancer Lett. 96, 105ā€“110.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  84. Ramesh, R., Marrogi, A. J., Munshi, A., Abboud, C. N., and Freeman, S. M. (1996) In vivo analysis of the ā€œbystander effectā€: a cytokine cascade. Exp. Hematol. 24, 829ā€“838.

    PubMedĀ  CASĀ  Google ScholarĀ 

  85. Agard, C., Ligeza, C., Dupas, B., et al. (2001) Immune-dependent distant bystander effect after adenovirus-mediated suicide gene transfer in a rat model of liver colorectal metastasis. Cancer Gene Ther. 8, 128ā€“136.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  86. Majumdar, A., Zolotorev, A., Samuel, S., et al. (2000) Efficacy of herpes simplex virus thymidine kinase in combination with cytokine gene therapy in an experimental metastatic breast cancer model. Cancer Gene Ther. 7, 1086ā€“1099.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Cao, X., Huang, X., Ju, D.W., Zhang, W.P., Hamada, H., and Wang, J. (2000) Enhanced antitumoral effect of adenovirus-mediated cytosine deaminase gene therapy by induction of antigen-presenting cells through stem cell factor/granulocyte macrophage colony-stimulating factor gene transfer. Cancer Gene Ther. 7, 177ā€“186.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Rivas, C., Chandler, P., Melo, J. V., Simpson, E., and Apperley, J. F. (2000) Absence of in vitro or in vivo bystander effects in a thymidine kinase-transduced murine T-lymphoma. Cancer Gene Ther. 7, 954ā€“962.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Karle, P., Renner, M., Salmons, B., and Gunzburg, W. H. (2001) Necrotic, rather than apoptotic death caused by cytochrome P450-activated ifosfamide. Cancer Gene Ther. 8, 220ā€“230.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Niculescu-Duvaz, I., Springer, C.J. (2004). Introduction to the Background, Principles, and State of the Art in Suicide Gene Therapy. In: Springer, C.J. (eds) Suicide Gene Therapy. Methods in Molecular Medicineā„¢, vol 90. Humana Press. https://doi.org/10.1385/1-59259-429-8:1

Download citation

  • DOI: https://doi.org/10.1385/1-59259-429-8:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-971-1

  • Online ISBN: 978-1-59259-429-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics