Enzyme-Prodrug Systems

Thymidine Phosphorylase/5′-Deoxy-5-Fluorouridine
  • Alexandre Evrard
  • Joseph Ciccolini
  • Pierre Cuq
  • Jean-Paul Cano
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 90)


Thymidine phosphorylase (E.C. (TP), also described as the angiogenic platelet-derived endothelial cell growth factor (PD-ECGF) (1, 2, 3, 4), is a homodimeric enzyme with a monomeric molecular mass of about 55 kDa (5,6) that phosphorolytically cleaves thymidine to yield thymine and deoxyribose-1-phosphate (dR-1-P) (7,8). TP is expressed in various human cells and tissues and plays a role in plasma thymidine homeostasis (9, 10, 11). The levels of expression in different human tissues can vary up to 15-fold (12). Moreover, TP levels are increased in several types of malignant tumors when compared to the non-neoplastic regions of these tissues (13) and also in the plasma from tumor-bearing animals and cancer patients (14).


Thymidine Phosphorylase Bystander Effect Thymidine Phosphorylase Expression Thymidine Phosphorylase Activity Cloning Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ishikawa, F, Miyazono, K., Hellman, U., et al. (1989) Identification of angiogenic activity and the cloning and expression of platelet derived endothelial cell growth factor. Nature 338, 557–562.PubMedCrossRefGoogle Scholar
  2. 2.
    Moghaddam, A. and Bicknell, R. (1992) Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity. Biochemistry 31, 12,141–12,146.PubMedCrossRefGoogle Scholar
  3. 3.
    Sumizawa, T., Furukawa, T., Haraguchi, M., et al. (1993) Thymidine phosphorylase activity associated with platelet-derived endothelial cell growth factor. J. Biochem. 114, 9–14.PubMedGoogle Scholar
  4. 4.
    Miyadera, K., Sumizawa, T., Haraguchi, M., et al. (1995) Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res. 55, 1687–1690.PubMedGoogle Scholar
  5. 5.
    Desgranges, C., Razaka, G., and Rabaud, H. (1981) Catabolism of thymidine in human blood platelets—purification and properties of thymidine phosphorylase. Biochim. Biophys. Acta 654, 211–218.PubMedGoogle Scholar
  6. 6.
    Miyazono, K., Okabe, T., Urabe, A., Takaku, F., and Heldin, C.H. (1987) Purification and properties of an endothelial cell growth factor from human platelets. J. Biol. Chem. 262, 4098–4103.PubMedGoogle Scholar
  7. 7.
    Friedkin, M. and Roberts, D. (1953) The enzymatic synthesis of nucleosides. Thymidine phosphorylase in mammalian tissue. J. Biol. Chem. 207, 245–256.Google Scholar
  8. 8.
    Krenitsky T. A. (1968) Pentosyl transfer mechanisms of the mammalian nucleoside phosphorylase. J. Biol. Chem. 243, 2871–2875.PubMedGoogle Scholar
  9. 9.
    Zimmerman, M. and Seidenberg, J. (1964) Deoxyribosyl transfer. Thymidine phosphorylase and nucleoside deoxyribosyltransferase in normal and malignant tissue. J. Biol. Chem. 230, 2618–2621.Google Scholar
  10. 10.
    Shaw, J., Smillie, R. H., Miller, A. E., and MacPhee, D. G. (1988) The role of blood platelets in nucleoside metabolism: regulation of thymidine phosphorylase. Mutat. Res. 200, 117–131.PubMedGoogle Scholar
  11. 11.
    Fox, S. B., Moghaddam, A., Westwood, M., et al. (1995) Platelet-derived endothelial cell growth factor thymidine phosphorylase expression in normal tissues-an immunohistochemical study. J. Pathol. 176, 183–190.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoshimura, A., Kuwazuru, Y., Furukawa, T., Yoshida, H., Yamada, K., and Akiyama, S. (1990) Purification and tissue distribution of human thymidine phosphorylase; high expression in lymphocytes, reticulocytes and tumors. Biochim. Biophys. Acta 1034, 107–113.PubMedGoogle Scholar
  13. 13.
    Obrien, T. S., Fox, S. B., Dickinson, A. J., et al. (1996) Expression of the angiogenic factor thymidine phosphorylase/platelet-derived endothelial cell growth factor in primary bladder cancers. Cancer Res. 56, 4799–4804.Google Scholar
  14. 14.
    Luccioni, C., Beaumatin, J., Bardot, V., and Lefrancois, D. (1994) Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts. Int. J. Cancer 58, 517–522.PubMedCrossRefGoogle Scholar
  15. 15.
    Ciccolini, J., Peillard, L., Evrard, A., et al. (2000) Enhanced antitumor activity of 5-fluorouracil in combination with 2′-deoxyinosine in human colorectal cell lines and human colon tumor xenografts. Clin. Cancer Res. 6, 1529–1535.PubMedGoogle Scholar
  16. 16.
    Ackland, S. P. and Peters, G. J. (1999) Thymidine phosphorylase: its role in sensitivity and resistance to anticancer drugs. Drug Resist. Updates 2, 205–214.CrossRefGoogle Scholar
  17. 17.
    Rustum, Y. M., Harstrick, A., Cao, S., et al. (1997) Thymidylate synthase inhibitors in cancer therapy: direct and indirect inhibitors. J. Clin. Oncol. 15, 389–400.PubMedGoogle Scholar
  18. 18.
    Sobrero, A. F., Aschele, C., and Bertino, J. R. (1997) Fluorouracil in colorectal cancer—A tale of two drugs: implications for biochemical modulation. J. Clin. Oncol. 15, 368–381.PubMedGoogle Scholar
  19. 19.
    Schwartz, E. L., Baptiste, N., Wadler, S., and Makower, D. (1995) Thymidine phosphorylase mediates the sensitivity of human colon carcinoma cells to 5-fluorouracil. J. Biol. Chem. 270, 19,073–19,077.PubMedCrossRefGoogle Scholar
  20. 20.
    Haraguchi, M., Furukawa, T., Sumizawa, T., and Akiyama, S. (1993) Sensitivity of human KB cells expressing platelet-derived endothelial cell growth factor factor to pyrimidine antimetabolites. Cancer Res. 53, 5680–5682.PubMedGoogle Scholar
  21. 21.
    Patterson, A.V., Zhang, H., Moghaddam, A., et al. (1995) Increased sensitivity to the prodrug 5′-deoxy-5-fluorouridine and modulation of 5-fluoro-2′-desoxyuridine sensitivity in MCF-7 cells transfected with thymidine phosphorylase. Br. J. Cancer 72, 669–675.PubMedCrossRefGoogle Scholar
  22. 22.
    Evrard, A., Cuq, P., Robert, B., Vian, L., Pèlegrin, A., and Cano, J. P. (1999) Enhancement of 5-fluorouracil cytotoxicity by human thymidine phosphorylase expression in cancer cells: in vitro and in vivo study. Int. J. Cancer 80, 465–470.PubMedCrossRefGoogle Scholar
  23. 23.
    Kato, Y., Matsukawa, S., Muraoka, R., and Tanigawa, N. (1997) Enhancement of drug sensitivity and a bystander effect in PC-9 cells transfected with a platelet-derived endothelial cell growth factor thymidine phosphorylase cDNA. Br. J. Cancer 75, 506–511.PubMedCrossRefGoogle Scholar
  24. 24.
    Evrard, A., Cuq, P., Ciccolini, J., Vian, L., and Cano, J.P. (1999) Increased cytotoxicity and bystander effect of 5-fluorouracil and 5-deoxy-5-fluorouridine in human colorectal cancer cells transfected with thymidine phosphorylase. Br. J. Cancer 80, 1726–1733.PubMedCrossRefGoogle Scholar
  25. 25.
    Morita, T., Matsuzaki, A. and Tokue, A. (2001) Enhancement of sensitivity to capecitabine in human renal carcinoma cells transfected with thymidine phosphorylase cDNA. Int. J. Cancer 92, 451–456.PubMedCrossRefGoogle Scholar
  26. 26.
    Fick, J., Barker, F. G. II, Dazin, P., Westphale, E. M., Beyer, E. C., and Israel, M. A. (1995) The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc. Natl. Acad. Sci. USA 92, 11,071–11,075.PubMedCrossRefGoogle Scholar
  27. 27.
    Denning, C. and Pitts, J. D. (1997) Bystander effect of different enzyme-prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimes. Hum. Gene Ther. 8, 1825–1835.PubMedCrossRefGoogle Scholar
  28. 28.
    Lonn, U., Lonn, S., Nylen, U., and Winblad, G. (1989) 5-Fluoropyrimidine-induced DNA damage in human colonadenocarcinoma and its augmentation by the nucleoside transport inhibitor dipyridamole. Cancer Res. 49, 1085–1089.PubMedGoogle Scholar
  29. 29.
    Grem, J. L. and Fischer, P. H. (1986) Alteration of fluorouracil metabolism in human colon cancer cells by dipyridamole with a selective increase in fluorodeoxyuridine monophosphate levels. Cancer Res. 46, 6191–6199.PubMedGoogle Scholar
  30. 30.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  31. 31.
    Ciccolini, J., Peillard, L., Aubert, C., Formento, P., Milano, G., and Catalin, J. (2000) Monitoring of the intracellular activation of 5-fluorouracil to deoxyribonucleotides in HT29 human colon cell line: application to modulation of metabolism and cytotoxicity study. Fundam. Clin. Pharmacol. 14, 147–154.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Alexandre Evrard
    • 1
  • Joseph Ciccolini
    • 2
  • Pierre Cuq
    • 1
  • Jean-Paul Cano
    • 1
  1. 1.Department of Toxicology, Faculty of PharmacyUniversity of MontpellierMontpellierFrance
  2. 2.Department of Pharmacokinetics and Toxicokinetics, Faculty of PharmacyUniversity of Aix-MarseilleMarseilleFrance

Personalised recommendations