Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 238))

Abstract

Alginate is a polysaccharide derived from brown seaweed, which has the unique property of being able to form a gel in the presence of certain divalent cations (e.g., calcium, strontium, or barium). Alginate has been of commercial interest in the food industry since the 1930s, when its properties as an emulsifier, thickener, and stabilizer were recognized. Alginate has also long been used for biomedical purposes, particularly in the manufacture of surgical dressings for exuding wounds (1). However, the explosive increase in medical applications for alginate, began with the recognition of its use as a scaffold for the encapsulation and immunoprotection of transplanted cells. The encapsulation of non-autologous islet cells in alginate for the treatment of diabetes is based on the concept that nutrients can diffuse in and insulin out of the alginate construct without triggering an immune response (23). Similarly, alginate has been used to immunoprotect recombinant cells delivering tumor-suppressing agents (45) and growth hormone (6). Stable cultures in alginate beads have been achieved with a number of cell types including chondrocytes, bone-marrow stromal cells, islets, myoblasts, fibroblasts, Schwann cells, kidney cells, epithelial cells, and hepatocytes. For orthopedic purposes, encapsulated bone-marrow stromal cells and chondrocytes have been proposed for the healing bone and cartilage defects (79). As a bulking agent, alginate has gained attention as a space-filling material for treating pediatric urinary reflex (1012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas, S. (2000) Alginate dressings in surgery and wound management—Part 1. J. Wound Care 9, 56–60.

    CAS  Google Scholar 

  2. Lim, F. and Sun, A. M. (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–910.

    Article  CAS  Google Scholar 

  3. Soon-Shiong, P., Heintz, R. E., Merideth, N., Yao, Q. X., Yao, Z., Zheng, T., et al. (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343, 950–951.

    Article  CAS  Google Scholar 

  4. Cirone, P., Bourgeois, J. M., Austin, R. C., and Chang, P. L. (2002) A novel approach to tumor suppression with microencapsulated recombinant cells. Hum. Gene Ther. 13, 1157–1166.

    Article  CAS  Google Scholar 

  5. Joki, T., Machluf, M., Atala, A., Zhu, J., Seyfried, N. T., Dunn, I. F., et al. (2001) Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat. Biotechnol. 19, 35–39.

    Article  CAS  Google Scholar 

  6. Chang, P. L. (1997) Microcapsules as bio-organs for somatic gene therapy. Ann. NY Acad. Sci. 831, 461–473.

    Article  CAS  Google Scholar 

  7. Shang, Q., Wang, Z., Liu, W., Shi, Y., Cui, L., and Cao, Y. (2001) Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J. Craniofac. Surg. 12, 586–593.

    Article  CAS  Google Scholar 

  8. Fragonas, E., Valente, M., Pozzi-Mucelli, M., Toffanin, R., Rizzo, R., Silvestri, F., et al. (2000) Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials 21, 795–801.

    Article  CAS  Google Scholar 

  9. Chang, S. C., Rowley, J. A., Tobias, G., Genes, N. G., Roy, A. K., Mooney, D. J., et al. (2001) Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J, Biomed, Mater, Res, 55, 503–511.

    Article  CAS  Google Scholar 

  10. Loebsack, A., Greene, K., Wyatt, S., Culberson, C., Austin, C., Beiler, R., et al. (2001) In vivo characterization of a porous hydrogel material for use as a tissue bulking agent. J. Biomed. Mater. Res. 57, 575–581.

    Article  CAS  Google Scholar 

  11. Diamond, D. and Caldamone, A. (1999) Endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes: preliminary results. J. Urol. 162, 1185–1188.

    Article  CAS  Google Scholar 

  12. Atala, A., Kim, W., Paige, K. T., Vacanti, C. A., and Retik, A. B. (1994) Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J. Urol. 152, 641–643; discussion 644.

    CAS  Google Scholar 

  13. Dornish, M., Kaplan, D., and Skaugrud, O. (2001) Standards and guidelines for biopolymers in tissue-engineered medical products: ASTM alginate and chitosan standard guides. American Society for Testing and Materials. Ann. NY Acad. Sci. 944, 388–397.

    Article  CAS  Google Scholar 

  14. Wong, M., Siegrist, M., Wang, X., and Hunziker, E. (2001) Development of mechanically stable alginate/chondrocyte constructs: effects of guluronic acid content and matrix synthesis. J. Orthop. Res. 19, 493–499.

    Article  CAS  Google Scholar 

  15. Draget, K., Myhre, S., Skjak-Break, G., and Ostgaard, K. (1988) Regeneration, cultivation and differentiation of plant protoplasts immobilized in Ca-alginate beads. J. Plant Physiol. 132, 552–556.

    Google Scholar 

  16. Martinsen, A., Skjak-Braek, G., and Smidsrod, O. (1989) Alginate as immobilization material: 1. Correlation between chemical and physical properties of alginate beads. Biotechnol. Bioeng. 33, 79–89.

    Article  CAS  Google Scholar 

  17. Kuo, C.K. and Ma, P.X. (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22, 511–521.

    Article  CAS  Google Scholar 

  18. Wideroe, H. and Danielsen, S. (2001) Evaluation of the use of Sr2+ in alginate immobilization of cells. Naturwissenschaften 88, 224–228.

    Article  CAS  Google Scholar 

  19. Peirone, M., Ross, C. J., Hortelano, G., Brash, J..L., and Chang, P. L. (1998) Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. J. Biomed. Mater. Res. 42, 587–596.

    Article  CAS  Google Scholar 

  20. Caterson, E. J., Li, W. J., Nesti, L. J., Albert, T., Danielson, K., and Tuan, R. S. (2002) Polymer/alginate amalgam for cartilage-tissue engineering. Ann. NY Acad. Sci. 961, 134–138.

    Article  CAS  Google Scholar 

  21. Lee, K.Y., Alsberg, E., and Mooney, D. J. (2001) Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. J. Biomed. Mater. Res. 56, 228–233.

    Article  CAS  Google Scholar 

  22. Halberstadt, C., Austin, C., Rowley, J., Culberson, C., Loebsack, A., Wyatt, S., et al. (2002) A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng. 8, 309–319.

    Article  CAS  Google Scholar 

  23. Hedbom, E., Ettinger, L., and Hauselmann, H. J. (2001) Culture of articular chondrocytes in alginate gel—a means to generate cartilage-like implantable tissue. Osteoarthritis Cartilage 9, S123–130.

    Google Scholar 

  24. Aydelotte, M. B., Greenhill, R. R., and Kuettner, K. E. (1988) Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect. Tissue Res. 18, 223–234.

    Article  CAS  Google Scholar 

  25. Aydelotte, M. B. and Kuettner, K. E. (1988) Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect. Tissue Res. 18, 205–222.

    Article  CAS  Google Scholar 

  26. Grant, G., Morris, E., Rees, D., Smith, P., and Thom, D. (1973) Biological interactions between polysaccharides and divalent cations. FEBS Lett. 32, 195–198.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Wong, M. (2004). Alginates in Tissue Engineering. In: Hollander, A.P., Hatton, P.V. (eds) Biopolymer Methods in Tissue Engineering. Methods in Molecular Biology™, vol 238. Humana Press. https://doi.org/10.1385/1-59259-428-X:77

Download citation

  • DOI: https://doi.org/10.1385/1-59259-428-X:77

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-967-4

  • Online ISBN: 978-1-59259-428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics