Mechanical Testing of Cell-Material Constructs: A Review

  • John Kisiday
  • Alex Kerin
  • Alan Grodzinsky
Part of the Methods in Molecular Biology™ book series (MIMB, volume 238)


The exponential growth in basic research and clinical trials involving tissue-engineered materials has generated a corresponding need for the evaluation of the material properties and functional performance of these constructs during development and/or after implantation. Applications focusing on musculoskeletal tissues, in particular, require detailed assessment of the biomechanical properties of neo-tissue constructs in vitro and in vivo (1). Based on the known properties of normal tissues, investigators have identified a range of biological, biochemical, and biophysical end-point parameters that must be quantified to determine the potential for success of a particular tissue-engineering methodology. Such end-point assessment is critical to our understanding of the basic scientific approaches underlying tissue engineering. In addition, biomechanical assessment is crucial for the implementation of regulatory processes that are coupled to clinical practice.


Biomechanical Property Unconfined Compression Tissue Construct Musculoskeletal Tissue Intrinsic Material Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Butler, D. L., Goldstein, S. A., and Guilak, F. (2000) Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122(6), 570–575.CrossRefGoogle Scholar
  2. 2.
    Athanasiou, K. A., Zhu, C., Lanctot, D. R., Agrawal, C. M., and Wang, X. (2000) Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng. 6(4), 361–381.CrossRefGoogle Scholar
  3. 3.
    Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H., and Hunziker, E. B. (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10(6), 745–758.CrossRefGoogle Scholar
  4. 4.
    Lyyra, T., Jurvelin, J., Pitkanen, P., Vaatainen, U., and Kiviranta, I. (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med. Eng. Phys. 17, 395–9.CrossRefGoogle Scholar
  5. 5.
    Mak, A. F., Lai, W. M., and Mow, V. C. (1987) Biphasic indentation of articular cartilage—I. Theoretical analysis. J. Biomech. 20(7), 703–714.CrossRefGoogle Scholar
  6. 6.
    Frank, E. H. and Grodzinsky, A. J. (1987) Cartilage electromechanics—II. A continuum model of cartilage electrokinetics and correlation with experiments. J. Biomech. 20(6), 629–639.CrossRefGoogle Scholar
  7. 7.
    Lai, W. M., Hou, J. S., and Mow, V. C. (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113(3), 245–258.CrossRefGoogle Scholar
  8. 8.
    Ehlers, W. and Markert, B. (2001) A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J. Biomech. Eng. 123(5), 418–424.CrossRefGoogle Scholar
  9. 9.
    DiSilvestro, M. R., Zhu, Q., and Suh, J. K. (2001) Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II—Effect of variable strain rates. J. Biomech. Eng. 123(2), 198–200.CrossRefGoogle Scholar
  10. 10.
    Chang, S. C., Rowley, J. A., Tobias, G., Genes, N. G., Roy, A. K., Mooney, D. J., et al. (2001) Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J. Biomed. Mater. Res. 55(4), 503–511.CrossRefGoogle Scholar
  11. 11.
    Mauck, R. L., Soltz, M. A., Wang, C. C., Wong, D. D., Chao, P. H., Valhmu, W. B., et al. (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122(3), 252–260.CrossRefGoogle Scholar
  12. 12.
    Kisiday, J. D., Jin, M., Hung, H., Kurz, B., Semino, C., Zhang, S., and et al. (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. PNAS 99(15), 9996–10,001.CrossRefGoogle Scholar
  13. 13.
    Glowacki, J. (2000) In vitro engineering of cartilage. J. Rehabil. Res. Dev. 37(2), 171–177.Google Scholar
  14. 14.
    Goldstein, S. A., Patil, P. V., and Moalli, M. R. (1999) Perspectives on tissue engineering of bone. Clin. Orthop. 367Suppl, S419–S423.Google Scholar
  15. 15.
    Woo, S. L., Hildebrand, K., Watanabe, N., Fenwick, J. A., Papageorgiou, C. D., and Wang, J. H. (1999) Tissue engineering of ligament and tendon healing. Clin. Orthop. 367Suppl, S312–S323.Google Scholar
  16. 16.
    Donahue, T. L., Gregersen, C., Hull, M. L., and Howell, S. M. (2001) Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. J. Biomech. Eng. 123(2), 162–169.CrossRefGoogle Scholar
  17. 17.
    Gardiner, J. C. and Weiss, J. A. (2001) Simple shear testing of parallel-fibered planar soft tissues. J. Biomech. Eng. 123(2), 170–175.CrossRefGoogle Scholar
  18. 18.
    Eckstein, F., Reiser, M., Englmeier, K. H., and Putz, R. (2001) In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging—from image to data, from data to theory. Anat. Embryol. 203(3), 147–173.CrossRefGoogle Scholar
  19. 19.
    Frank, E. H. and Grodzinsky, A. J. (1987) Cartilage electromechanics—I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. J. Biomech. 20(6), 615–627.CrossRefGoogle Scholar
  20. 20.
    Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., and et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17(1), 130–138.CrossRefGoogle Scholar
  21. 21.
    Freed, L. E., Langer, R., Martin, I., Pellis, N. R., and Vunjak-Novakovic, G. (1997) Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. USA 94(25), 13,885–13,890.CrossRefGoogle Scholar
  22. 22.
    Lee, C. R., Breinan, H. A., Nehrer, S., and Spector, M. (2000) Articular cartilage chondrocytes in type I and type II collagen-GAG matrices exhibit contractile behavior in vitro. Tissue Eng. 6(5), 555–565.CrossRefGoogle Scholar
  23. 23.
    Klisch, S. M. and Lotz, J. C. (2000) A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression. J. Biomech. Eng. 122(2), 180–188.CrossRefGoogle Scholar
  24. 24.
    Fortin, M., Soulhat, J., Shirazi-Adl, A., Hunziker, E. B., and Buschmann, M. D. (2000) Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122(2), 189–195.CrossRefGoogle Scholar
  25. 25.
    Stammen, J. A., Williams, S., Ku, D. N., and Guldberg, R. E. (2001) Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22(8), 799–806.CrossRefGoogle Scholar
  26. 26.
    Catanese, J. 3rd, Featherstone, J. D., and Keaveny, T. M. (1999) Characterization of the mechanical and ultrastructural properties of heat-treated cortical bone for use as a bone substitute. J. Biomed. Mater. Res. 45(4), 327–336.CrossRefGoogle Scholar
  27. 27.
    Cartmell, J. S. and Dunn, M.G. (2000) Effect of chemical treatments on tendon cellularity and mechanical properties. J. Biomed. Mater. Res. 49(1), 134–140.CrossRefGoogle Scholar
  28. 28.
    Fedewa, M. M., Oegema, Jr, T. R., Schwartz, M. H., MacLeod, A., and Lewis, J. L. (1998) Chondrocytes in culture produce a mechanically functional tissue. J. Orthop. Res. 16(2), 227–236.CrossRefGoogle Scholar
  29. 29.
    Guilak, F., Ratcliffe, A., Lane, N., Rosenwasser, M. P., Mow, V. C. (1994) Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J. Orthop. Res. 12(4), 474–484.CrossRefGoogle Scholar
  30. 30.
    Stading, M. and Langer, R. (1999) Mechanical shear properties of cell-polymer cartilage constructs. Tissue Eng. 5(3), 241–250.CrossRefGoogle Scholar
  31. 31.
    Frank, E. H., Jin, M., Loening, A. M., Levenston, M. E., and Grodzinsky, A. J. (2000) A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J. Biomech. 33(11), 1523–1527.CrossRefGoogle Scholar
  32. 32.
    Jin, M. and Grodzinsky, A. J. (2001) The effect of electrostatic interactions between glycosaminoglycans on the shear stiffness of cartilage: a molecular model and experiments. Macromolecules 34, 8330–8339.CrossRefGoogle Scholar
  33. 33.
    Anderson, D. R., Woo, S. L., Kwan, M. K., and Gershuni, D. H. (1991) Viscoelastic shear properties of the equine medial meniscus. J. Orthop. Res. 9(4), 550–558.CrossRefGoogle Scholar
  34. 34.
    Simon, W. H., Mak, A. F., and Spirt, A. A. (1989) The effect of shear fatigue on bovine articular cartilage. J. Orthop. Res. 8(1), 86–93.CrossRefGoogle Scholar
  35. 35.
    Jones, W. R., Ting-Beall, H. P., Lee, G. M., Kelley, S. S., Hochmuth, R. M., and Guilak, F. (1999) Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32(2), 119–127.CrossRefGoogle Scholar
  36. 36.
    Rotsch, C., Jacobson, K., and Radmacher, M. (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96(3), 921–96.CrossRefGoogle Scholar
  37. 37.
    Bausch, A. R., Ziemann, F., Boulbitch, A. A., Jacobson, K., and Sackmann, E. (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75(4), 2038–2049CrossRefGoogle Scholar
  38. 38.
    Eisenberg, S. R. and Grodzinsky, A. J. (1985) Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J. Orthop. Res. 3(2), 148–159.CrossRefGoogle Scholar
  39. 39.
    Danto, M. I. and Woo, S.-L. (1993) The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J. Orthop. Res. 11(1), 58–67.CrossRefGoogle Scholar
  40. 40.
    Freeman, P. M., Natarajan, R. N., Kimura, J. H., and Andriacchi, T. P. (1994) Chondrocyte cells respond mechanically to compressive loads. J. Orthop. Res. 12(3), 311–320.CrossRefGoogle Scholar
  41. 41.
    Lee, D. A., Knight, M. M., Bolton, J. F., Idowu, B. D., Kayser, M. V., and Bader, D. L. (2000) Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J. Biomech. 33(1), 81–95.CrossRefGoogle Scholar
  42. 42.
    Gray, M. L., Pizzanelli, A. M., Grodzinsky, A. J., and Lee, R. C. (1988) Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6(6), 777–792.CrossRefGoogle Scholar
  43. 43.
    Sah, R. L., Kim, Y. J., Doong, J. Y., Grodzinsky, A. J., Plaas, A. H., and Sandy, J. D. (1989) Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7(5), 619–636.CrossRefGoogle Scholar
  44. 44.
    Jin, M., Frank, E. H., Quinn, T. M., Hunziker, E. B., and Grodzinsky, A. J. (2001) Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch. Biochem. Biophys. 395(1), 41–48.CrossRefGoogle Scholar
  45. 45.
    Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., and Hunziker, E. B. (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(Pt 4), 1497–1508.Google Scholar
  46. 46.
    Ragan, P. M., Chin, V. I., Hung, H. H., Masuda, K., Thonar, E. J., Arner, E. C., et al. (2000) Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch. Biochem. Biophys. 383(2), 256–264.CrossRefGoogle Scholar
  47. 47.
    Ker, R. F. (1999) The design of soft collagenous load-bearing tissues. J. Exp. Biol. 202Pt 23, 3315–3124.Google Scholar
  48. 48.
    Niederauer, M. Q., Cristante, S., Niederauer, G. M., Wilkes, R. P., Singh, S. M., Messina, D. F., et al. (1998) A novel instument for quantitatively measuring the stiffness of articular cartilage. New Orleans, LA, ORS. Transactions of the Orthopaedic Research Society.Google Scholar
  49. 49.
    Toyras, J., Lyyra-Laitinen, T., Niinimaki, M., Lindgren, R., Nieminen, M. T., Kiviranta, I., et al. (2001) Estimation of the Young’s modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. J. Biomech. 34, 251–256.CrossRefGoogle Scholar
  50. 50.
    Appleyard, R. C., Swain, M. V., Khanna, S., and Murrell, G. A. (2001) The accuracy and reliability of a novel handheld dynamic indentation probe for analyzing articular cartilage. Phys. Med. Biol. 46, 541–550.CrossRefGoogle Scholar
  51. 51.
    Berkenblit, S. I., Frank, E. H., Salant, E. P., and Grodzinsky, A. J. (1994) Nondestructive detection of cartilage degeneration using electromechanical surface spectroscopy. J. Biomech. Eng. 116, 384–392.CrossRefGoogle Scholar
  52. 52.
    Treppo, S., Berkenblit, S. I., Bombard, D. L., Frank, E. H., and Grodzinsky, A. J. (1999) Physical diagnostics of cartilage degeneration, in Advances in Osteoarthritis (Tanaka, S. and Hamanishi, C., eds.), Springer-Verlag, Tokyo, pp. 59–73.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • John Kisiday
    • 1
  • Alex Kerin
    • 1
  • Alan Grodzinsky
    • 1
  1. 1.MIT Center for Biomedical EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations