Biopolymer Methods in Tissue Engineering pp 239-254 | Cite as
Mechanical Testing of Cell-Material Constructs: A Review
- 999 Downloads
Abstract
The exponential growth in basic research and clinical trials involving tissue-engineered materials has generated a corresponding need for the evaluation of the material properties and functional performance of these constructs during development and/or after implantation. Applications focusing on musculoskeletal tissues, in particular, require detailed assessment of the biomechanical properties of neo-tissue constructs in vitro and in vivo (1). Based on the known properties of normal tissues, investigators have identified a range of biological, biochemical, and biophysical end-point parameters that must be quantified to determine the potential for success of a particular tissue-engineering methodology. Such end-point assessment is critical to our understanding of the basic scientific approaches underlying tissue engineering. In addition, biomechanical assessment is crucial for the implementation of regulatory processes that are coupled to clinical practice.
Keywords
Biomechanical Property Unconfined Compression Tissue Construct Musculoskeletal Tissue Intrinsic Material PropertyReferences
- 1.Butler, D. L., Goldstein, S. A., and Guilak, F. (2000) Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122(6), 570–575.CrossRefGoogle Scholar
- 2.Athanasiou, K. A., Zhu, C., Lanctot, D. R., Agrawal, C. M., and Wang, X. (2000) Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng. 6(4), 361–381.CrossRefGoogle Scholar
- 3.Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H., and Hunziker, E. B. (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10(6), 745–758.CrossRefGoogle Scholar
- 4.Lyyra, T., Jurvelin, J., Pitkanen, P., Vaatainen, U., and Kiviranta, I. (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med. Eng. Phys. 17, 395–9.CrossRefGoogle Scholar
- 5.Mak, A. F., Lai, W. M., and Mow, V. C. (1987) Biphasic indentation of articular cartilage—I. Theoretical analysis. J. Biomech. 20(7), 703–714.CrossRefGoogle Scholar
- 6.Frank, E. H. and Grodzinsky, A. J. (1987) Cartilage electromechanics—II. A continuum model of cartilage electrokinetics and correlation with experiments. J. Biomech. 20(6), 629–639.CrossRefGoogle Scholar
- 7.Lai, W. M., Hou, J. S., and Mow, V. C. (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113(3), 245–258.CrossRefGoogle Scholar
- 8.Ehlers, W. and Markert, B. (2001) A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J. Biomech. Eng. 123(5), 418–424.CrossRefGoogle Scholar
- 9.DiSilvestro, M. R., Zhu, Q., and Suh, J. K. (2001) Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II—Effect of variable strain rates. J. Biomech. Eng. 123(2), 198–200.CrossRefGoogle Scholar
- 10.Chang, S. C., Rowley, J. A., Tobias, G., Genes, N. G., Roy, A. K., Mooney, D. J., et al. (2001) Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J. Biomed. Mater. Res. 55(4), 503–511.CrossRefGoogle Scholar
- 11.Mauck, R. L., Soltz, M. A., Wang, C. C., Wong, D. D., Chao, P. H., Valhmu, W. B., et al. (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122(3), 252–260.CrossRefGoogle Scholar
- 12.Kisiday, J. D., Jin, M., Hung, H., Kurz, B., Semino, C., Zhang, S., and et al. (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. PNAS 99(15), 9996–10,001.CrossRefGoogle Scholar
- 13.Glowacki, J. (2000) In vitro engineering of cartilage. J. Rehabil. Res. Dev. 37(2), 171–177.Google Scholar
- 14.Goldstein, S. A., Patil, P. V., and Moalli, M. R. (1999) Perspectives on tissue engineering of bone. Clin. Orthop. 367Suppl, S419–S423.Google Scholar
- 15.Woo, S. L., Hildebrand, K., Watanabe, N., Fenwick, J. A., Papageorgiou, C. D., and Wang, J. H. (1999) Tissue engineering of ligament and tendon healing. Clin. Orthop. 367Suppl, S312–S323.Google Scholar
- 16.Donahue, T. L., Gregersen, C., Hull, M. L., and Howell, S. M. (2001) Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. J. Biomech. Eng. 123(2), 162–169.CrossRefGoogle Scholar
- 17.Gardiner, J. C. and Weiss, J. A. (2001) Simple shear testing of parallel-fibered planar soft tissues. J. Biomech. Eng. 123(2), 170–175.CrossRefGoogle Scholar
- 18.Eckstein, F., Reiser, M., Englmeier, K. H., and Putz, R. (2001) In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging—from image to data, from data to theory. Anat. Embryol. 203(3), 147–173.CrossRefGoogle Scholar
- 19.Frank, E. H. and Grodzinsky, A. J. (1987) Cartilage electromechanics—I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. J. Biomech. 20(6), 615–627.CrossRefGoogle Scholar
- 20.Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., and et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17(1), 130–138.CrossRefGoogle Scholar
- 21.Freed, L. E., Langer, R., Martin, I., Pellis, N. R., and Vunjak-Novakovic, G. (1997) Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. USA 94(25), 13,885–13,890.CrossRefGoogle Scholar
- 22.Lee, C. R., Breinan, H. A., Nehrer, S., and Spector, M. (2000) Articular cartilage chondrocytes in type I and type II collagen-GAG matrices exhibit contractile behavior in vitro. Tissue Eng. 6(5), 555–565.CrossRefGoogle Scholar
- 23.Klisch, S. M. and Lotz, J. C. (2000) A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression. J. Biomech. Eng. 122(2), 180–188.CrossRefGoogle Scholar
- 24.Fortin, M., Soulhat, J., Shirazi-Adl, A., Hunziker, E. B., and Buschmann, M. D. (2000) Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122(2), 189–195.CrossRefGoogle Scholar
- 25.Stammen, J. A., Williams, S., Ku, D. N., and Guldberg, R. E. (2001) Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22(8), 799–806.CrossRefGoogle Scholar
- 26.Catanese, J. 3rd, Featherstone, J. D., and Keaveny, T. M. (1999) Characterization of the mechanical and ultrastructural properties of heat-treated cortical bone for use as a bone substitute. J. Biomed. Mater. Res. 45(4), 327–336.CrossRefGoogle Scholar
- 27.Cartmell, J. S. and Dunn, M.G. (2000) Effect of chemical treatments on tendon cellularity and mechanical properties. J. Biomed. Mater. Res. 49(1), 134–140.CrossRefGoogle Scholar
- 28.Fedewa, M. M., Oegema, Jr, T. R., Schwartz, M. H., MacLeod, A., and Lewis, J. L. (1998) Chondrocytes in culture produce a mechanically functional tissue. J. Orthop. Res. 16(2), 227–236.CrossRefGoogle Scholar
- 29.Guilak, F., Ratcliffe, A., Lane, N., Rosenwasser, M. P., Mow, V. C. (1994) Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J. Orthop. Res. 12(4), 474–484.CrossRefGoogle Scholar
- 30.Stading, M. and Langer, R. (1999) Mechanical shear properties of cell-polymer cartilage constructs. Tissue Eng. 5(3), 241–250.CrossRefGoogle Scholar
- 31.Frank, E. H., Jin, M., Loening, A. M., Levenston, M. E., and Grodzinsky, A. J. (2000) A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J. Biomech. 33(11), 1523–1527.CrossRefGoogle Scholar
- 32.Jin, M. and Grodzinsky, A. J. (2001) The effect of electrostatic interactions between glycosaminoglycans on the shear stiffness of cartilage: a molecular model and experiments. Macromolecules 34, 8330–8339.CrossRefGoogle Scholar
- 33.Anderson, D. R., Woo, S. L., Kwan, M. K., and Gershuni, D. H. (1991) Viscoelastic shear properties of the equine medial meniscus. J. Orthop. Res. 9(4), 550–558.CrossRefGoogle Scholar
- 34.Simon, W. H., Mak, A. F., and Spirt, A. A. (1989) The effect of shear fatigue on bovine articular cartilage. J. Orthop. Res. 8(1), 86–93.CrossRefGoogle Scholar
- 35.Jones, W. R., Ting-Beall, H. P., Lee, G. M., Kelley, S. S., Hochmuth, R. M., and Guilak, F. (1999) Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32(2), 119–127.CrossRefGoogle Scholar
- 36.Rotsch, C., Jacobson, K., and Radmacher, M. (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96(3), 921–96.CrossRefGoogle Scholar
- 37.Bausch, A. R., Ziemann, F., Boulbitch, A. A., Jacobson, K., and Sackmann, E. (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75(4), 2038–2049CrossRefGoogle Scholar
- 38.Eisenberg, S. R. and Grodzinsky, A. J. (1985) Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J. Orthop. Res. 3(2), 148–159.CrossRefGoogle Scholar
- 39.Danto, M. I. and Woo, S.-L. (1993) The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J. Orthop. Res. 11(1), 58–67.CrossRefGoogle Scholar
- 40.Freeman, P. M., Natarajan, R. N., Kimura, J. H., and Andriacchi, T. P. (1994) Chondrocyte cells respond mechanically to compressive loads. J. Orthop. Res. 12(3), 311–320.CrossRefGoogle Scholar
- 41.Lee, D. A., Knight, M. M., Bolton, J. F., Idowu, B. D., Kayser, M. V., and Bader, D. L. (2000) Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J. Biomech. 33(1), 81–95.CrossRefGoogle Scholar
- 42.Gray, M. L., Pizzanelli, A. M., Grodzinsky, A. J., and Lee, R. C. (1988) Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6(6), 777–792.CrossRefGoogle Scholar
- 43.Sah, R. L., Kim, Y. J., Doong, J. Y., Grodzinsky, A. J., Plaas, A. H., and Sandy, J. D. (1989) Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7(5), 619–636.CrossRefGoogle Scholar
- 44.Jin, M., Frank, E. H., Quinn, T. M., Hunziker, E. B., and Grodzinsky, A. J. (2001) Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch. Biochem. Biophys. 395(1), 41–48.CrossRefGoogle Scholar
- 45.Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., and Hunziker, E. B. (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(Pt 4), 1497–1508.Google Scholar
- 46.Ragan, P. M., Chin, V. I., Hung, H. H., Masuda, K., Thonar, E. J., Arner, E. C., et al. (2000) Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch. Biochem. Biophys. 383(2), 256–264.CrossRefGoogle Scholar
- 47.Ker, R. F. (1999) The design of soft collagenous load-bearing tissues. J. Exp. Biol. 202Pt 23, 3315–3124.Google Scholar
- 48.Niederauer, M. Q., Cristante, S., Niederauer, G. M., Wilkes, R. P., Singh, S. M., Messina, D. F., et al. (1998) A novel instument for quantitatively measuring the stiffness of articular cartilage. New Orleans, LA, ORS. Transactions of the Orthopaedic Research Society.Google Scholar
- 49.Toyras, J., Lyyra-Laitinen, T., Niinimaki, M., Lindgren, R., Nieminen, M. T., Kiviranta, I., et al. (2001) Estimation of the Young’s modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. J. Biomech. 34, 251–256.CrossRefGoogle Scholar
- 50.Appleyard, R. C., Swain, M. V., Khanna, S., and Murrell, G. A. (2001) The accuracy and reliability of a novel handheld dynamic indentation probe for analyzing articular cartilage. Phys. Med. Biol. 46, 541–550.CrossRefGoogle Scholar
- 51.Berkenblit, S. I., Frank, E. H., Salant, E. P., and Grodzinsky, A. J. (1994) Nondestructive detection of cartilage degeneration using electromechanical surface spectroscopy. J. Biomech. Eng. 116, 384–392.CrossRefGoogle Scholar
- 52.Treppo, S., Berkenblit, S. I., Bombard, D. L., Frank, E. H., and Grodzinsky, A. J. (1999) Physical diagnostics of cartilage degeneration, in Advances in Osteoarthritis (Tanaka, S. and Hamanishi, C., eds.), Springer-Verlag, Tokyo, pp. 59–73.Google Scholar