Bioreactor Culture Techniques for Cartilage-Tissue Engineering

  • David A. Lee
  • Ivan Martin
Part of the Methods in Molecular Biology™ book series (MIMB, volume 238)


Tissue engineering is a major focus of biotechnological research today, with the expectation that this type of technique will ultimately transform medical practice (1). The most ambitious tissue-engineering schemes assume that specific tissues and organs will be restored, in a multistage fabrication procedure. For example, cells derived from the patient may be processed to increase the total number available, seeded into a suitable three-dimensional (3D) resorbable scaffold and further processed in vitro to induce the elaboration of neo-tissue prior to implantation (2).


Calcium Chloride Solution Trypan Blue Solution Rotate Wall Vessel Rotary Cell Culture System Static Culture Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nerem, R. M. (2000) Tissue engineering: confronting the transplant crisis. Proc. Inst. Mech. Engrs. Part H, 214, 95–99.CrossRefGoogle Scholar
  2. 2.
    Bader, D. L. and Lee, D. A. (2000) Structure-properties of soft tissues: articular cartilage, in Structural Biological Materials: Design and Structure Property Relationships (Elices, M., ed.), Oxford, UK, Pergamon Press, pp. 73–104.Google Scholar
  3. 3.
    Ateshian, G.A., Soslowsky, L. J., and Mow, V. C. (1991) Quantitation of articular surface topography and cartilage thickness in knee joints using sterophotogram-metry. J. Biomechanics 24, 761–776.CrossRefGoogle Scholar
  4. 4.
    Enobakhare, B., Bader, D. L., and Lee, D. A. (2001) Physiochemical, biochemical and mechanical characterisation of chondrocyte/alginate constructs. Trans. Orthop. Res. Soc. 26, 638.Google Scholar
  5. 5.
    Wu, F., Dunkelman, N., Peterson, A., Davisson, T., De La Torre, R., and Jain, D. (1999) Bioreactor development for tissue-engineered cartilage. Ann. NY Acad. Sci. 875, 405–411.CrossRefGoogle Scholar
  6. 6.
    Obradovic, B., Carrier, R. L., Vunjak-Novakovic, G., and Freed, L. E. (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng. 63, 197–205.CrossRefGoogle Scholar
  7. 7.
    Huang, D., Chang, T. R., Aggarwal, A., Lee, R. C., and Ehrlich, H. P. (1993) Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21, 289–305.CrossRefGoogle Scholar
  8. 8.
    Freed, L. E., Vunjak-Novakovic, G., Biron, R.J., Eagles, D. B., Lesnoy, D. C., Barlow, S. K., et al. (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology 12, 689–693.CrossRefGoogle Scholar
  9. 9.
    Paige, K. T., Cima, L. G., Yaremchuk, M. J., Schloo, B. L., Vacanti, J. P., and Vacanti, C. A. (1996) De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast. Reconstr. Surg. 97, 68–78.Google Scholar
  10. 10.
    Begley, C. M. and Kleis, S. J. (2000) The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotechnol. Bioeng. 70, 32–40.CrossRefGoogle Scholar
  11. 11.
    Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17, 130–138.CrossRefGoogle Scholar
  12. 12.
    Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., Freed, L. E., et al. (2000) Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37, 141–147.Google Scholar
  13. 13.
    Lee, D. A. and Bader, D. L. (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15, 181–188.CrossRefGoogle Scholar
  14. 14.
    Lee, D. A., Noguchi, T., Frean, S. P., Lees, P., and Bader, D. L. (2000) The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology 37, 149–161.Google Scholar
  15. 15.
    Vunjak-Novakovic, G., Obradovic, B., Martin I., Bursac, P. M., Langer, R., and Freed, L. E. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Progr. 14, 193–202CrossRefGoogle Scholar
  16. 16.
    Freed, L. E., Hollander, A. P., Martin I., Barry, J. R., Langer, R., and Vunjak-Novakovic, G. (1998) Chondrogenesis in a cell-polymer-bioreactor system. Exp. Cell Res. 240, 58–65.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • David A. Lee
    • 1
  • Ivan Martin
    • 2
  1. 1.Department of EngineeringQueen Mary University of LondonLondonUK
  2. 2.Research Division of the Department of SurgeryUniversity of BaselBaselSwitzerland

Personalised recommendations