Chondrocyte Isolation, Expansion, and Culture on Polymer Scaffolds

  • Aileen Crawford
  • Sally C. Dickinson
Part of the Methods in Molecular Biology™ book series (MIMB, volume 238)


The chondrocyte is responsible for maintaining the integrity of the complex extracellular matrix (ECM) of articular cartilage. Therefore, chondrocytes directly control the biomechanical properties of the tissue that enable articular cartilage to bear cyclical compressive loading (1). The ultimate goal of articular cartilage engineering is to produce a cartilage construct with identical structure and properties to native tissue. Although this goal has not yet been achieved, many advances have been made in understanding the biology of the extracellular cartilage matrix (1|–5).


Articular Cartilage Polymer Scaffold Spinner Flask Chondrocyte Culture Expansion Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Buckwalter, J. A. and Mankin, H. J. (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instruct. Course Lect. 47, 477–486.Google Scholar
  2. 2.
    Cohen, N. P., Foster, R. J., and Mow, V. C. (1998) Composition and dynamics of articular cartilage: structure, function and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28, 203–215.Google Scholar
  3. 3.
    Rosier, R. N. and O’Keefe, R. J. (1998) Autocrine regulation of articular cartilage. Instruct. Course Lect. 47, 469–475.Google Scholar
  4. 4.
    Poole, C. A. (1997) Articular cartilage chondrons: form, function and failure. J. Anat. 191, 1–13.CrossRefGoogle Scholar
  5. 5.
    Oloyede, A. and Broom, N. (1996) The biomechanics of cartilage load-carriage. Connect. Tissue Res. 34, 119–143.CrossRefGoogle Scholar
  6. 6.
    Poole, A. R. (1993) Cartilage in health and disease, in Arthritis and Allied Conditions: A Textbook of Rheumatology (McCarty, D. J. Jr., Koopman, W. J., eds.), Lea and Febiger, Philadelphia, PA, pp. 279–333.Google Scholar
  7. 7.
    Muir, H. (1995) The chondrocyte, architect of cartilage: biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioassays 17, 1039–1048.CrossRefGoogle Scholar
  8. 8.
    Benya, P. and Shaffer, J. D. (1982) Dedifferentiated chondrocytes re-express the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224.CrossRefGoogle Scholar
  9. 9.
    Liu, H., Lee, Y. W., and Dean, M. F. (1998) Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim. Biophys. Acta 1425, 505–515.Google Scholar
  10. 10.
    Lemare, F., Steimberg N., Le Greil, C., Demignot, S., and Adolphe, M. (1998) Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to interleukin 1 beta. J. Cell. Physiol. 176, 303–313.CrossRefGoogle Scholar
  11. 11.
    Martin, I., Vunjak-Novakovic, G., Yang, J., Langer, R., and Freed, L. E. (1999) Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilagenous tissue. Exp. Cell Res. 253, 681–688.CrossRefGoogle Scholar
  12. 12.
    O’Conner, W. J., Botti, T., Khan, S. N., and Lane, J. M. (2000) The use of growth factors in cartilage repair. Orthop. Clin. N. Am. 31, 399–410.CrossRefGoogle Scholar
  13. 13.
    Loeser, R. F. and Gouri, S. (2000) Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro. Arthritis Rheum. 43, 1552–1559.CrossRefGoogle Scholar
  14. 14.
    Geurne, P. A., Blanko, F., Kaelin, A., Desgeorges, A., and Lotz, M. (1995) Growth factor responsiveness of human articular chondrocytes in ageing and development. Arthritis Rheum. 38, 960–968.CrossRefGoogle Scholar
  15. 15.
    McQuillan, D. S., Handley, C. J., Cambell, M. A., Bilis, S., Milway, V. E., and Herington, A. C. (1986) Stimulation of proteoglycan biosynthesis by serum and insulin-like growth factor-I in cultured bovine articular cartilage. Biochem. J. 240, 423–430.Google Scholar
  16. 16.
    Sah, R. L., Chen, A. C., Grodzinsky, A. J., and Trippel, S. B. (1994) Differential effect of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch. Biochem. Biophys. 308, 137–147.CrossRefGoogle Scholar
  17. 17.
    Pavasant, P., Shizari, T., and Underhill, C. B. (1996) Hyaluronan synthesis by epiphyseal chondrocytes is regulated by growth hormone, insulin-like growth factor-1, parathyroid hormone and transforming growth factor-beta 1. Matrix Biol. 15, 423–432.CrossRefGoogle Scholar
  18. 18.
    Sah, R. L. Y., Trippel, S. B., and Grodzinsky, A. J. (1996) Differential effects of serum, insulin-like growth factor 1 and fibroblast growth factor-2 on the maintenance of cartilage physical properties during long-term culture. J. Orthop. Res. 14, 44–52.CrossRefGoogle Scholar
  19. 19.
    Hunziker, E. B. and Rosenberg, L. (1994) Induction of repair in partial thickness articular cartilage lesions by timed release of TGF-beta. Trans. Orthop. Res. Soc. 19, 236.Google Scholar
  20. 20.
    Osaki, M., Tsukazaki, T., Yonekura, A., Myazaki, Y., Iwasaki, K., Shindo, H., et al. (1999) Regulation of c-fos gene induction and mitogenic effect of transforming growth factor-β1 in rat articular chondrocyte. Endocrine J. 46, 253–261.CrossRefGoogle Scholar
  21. 21.
    Demoor-Fossard, M., Redini, F., Boittin, M., and Pujol, J. P. (1998) Expression of decorin and biglycan by rabbit articular chondrocytes. Effects of cytokines and phenotypic modulation. Biochim. Biophys. Acta 1398, 179–191.Google Scholar
  22. 22.
    Morales, T. I. and Roberts, A. B. (1988) Transforming growth factor-β regulates the metabolism of proteoglycans in bovine cartilage organ culture. J. Biol. Chem. 263, 12828–12831.Google Scholar
  23. 23.
    Iqual, J., Dudhia, J., Bird, J. L., and Bayliss, M. T. (2000) Age related effects of TGF-beta on proteoglycan synthesis in equine articular cartilage. Biochem. Biophys. Res. Commun. 274, 467–471.CrossRefGoogle Scholar
  24. 24.
    van der Kraan, P. M., Vitters, E. L., and van den Berg, W. B. (1992) Inhibition of proteoglycan synthesis by transforming growth factor-β in anatomically intact cartilage of murine patellae. Ann. Rheum. Dis. 51, 643–647.CrossRefGoogle Scholar
  25. 25.
    van Beuningen, H. M., Glansbeek, H. L, van der Kraan, P. M., and van den Berg, W. B. (1998) Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. (1998) Osteoarthritis and Cartilage 6, 306–331.CrossRefGoogle Scholar
  26. 26.
    Glansbeek, H. L., van Beuningen, H. M., Vitters, E. L., Morris, E. A., van den Kraan, P. M., and van den Berg, W. B. (1997) Bone morphogenic protein 2 stimulates articular cartilage proteoglycan synthesis in vivo but does not counteract interleukin-1 alpha effects on proteoglycan synthesis and content. Arthritis Rheum. 40, 1020–1028.CrossRefGoogle Scholar
  27. 27.
    Nishida, Y., Knudson, C. B., Kuettner, K. E., and Knudson, W. (2000) Osteogenic protein-1 promotes the synthesis and retention of extracellular matrix within bovine articular cartilage and chondrocyte cultures. Osteoarthritis and Cartilage 8, 127–136.CrossRefGoogle Scholar
  28. 28.
    Huch, K., Wilbrink, B., Flechtenmacher, J., Koepp, H. E., Aydelotte, M. B., Sampath, T. K., et al. (1997) Effects of recombinant human osteogenic protein 1 on the production of proteoglycan, prostaglandin E2 and interleukin-1 receptor antagonist by human articular chondrocytes cultured in the presence of interleukin-1 beta. Arthritis Rheum. 40, 2157–2161.CrossRefGoogle Scholar
  29. 29.
    Vunjak-Novakovic, G., Obradovic, B., Martin, I., Bursac, P. M., Langer, R., and Freed, L. E. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14, 293–202.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Aileen Crawford
    • 1
  • Sally C. Dickinson
    • 2
  1. 1.School of Clinical DentistryUniversity of SheffieldSheffieldUK
  2. 2.Department of Academic RheumatologyUniversity of Bristol, Southmead HospitalBristolUK

Personalised recommendations