Skip to main content

Cell Seeding of Polymer Scaffolds

  • Protocol
Biopolymer Methods in Tissue Engineering

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 238))

Abstract

Engineered tissues could form the basis for novel therapies for millions of patients who suffer from the loss of tissue or its function (1), and be used for in vitro studies of tissue development and normal and pathological function. One approach to tissue engineering involves seeding of a high density of uniformly distributed cells on three-dimensional (3D) polymeric scaffolds, and cultivating the resulting cell-polymer constructs under conditions that permit the formation of functional tissues (2). The scaffold provides a defined structure for cell attachment and tissue development, and the bioreactor provides control over the biochemical and physical factors in the cell environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer, R. and Vacanti, J. P. (1993) Tissue engineering. Science 260, 920–926.

    Article  CAS  Google Scholar 

  2. Freed, L. E. and Vunjak-Novakovic, G. (2000) Tissue engineering bioreactors, in Principles of Tissue Engineering (Lanza, R. P., Langer, R., and Vacanti, J., eds.), Academic Press, San Diego, CA, pp. 143–156.

    Chapter  Google Scholar 

  3. Vunjak-Novakovic, G., Obradovic, B., Bursac, P., Martin, I., Langer, R., and Freed, L. E. (1998) Dynamic seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14, 193–202.

    Article  CAS  Google Scholar 

  4. Obradovic, B., Carrier, R. L., Vunjak-Novakovic, G., and Freed, L. E. (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63, 197–205.

    Article  CAS  Google Scholar 

  5. Buckwalter, J. A. and Mankin, H. J. (1997) Articular cartilage 1. Tissue design and chondrocyte-matrix interactions. J. Bone Jt. Surg. 79A, 600–611.

    Google Scholar 

  6. MacKenna, D. A., Omens, J. H., McCulloch, A. D., and Covell, J. W. (1994) Contribution of collagen matrix to passive left ventricular mechanics in isolated rat heart. Am. J. Physiol. 266, H1007–H1018.

    CAS  Google Scholar 

  7. Brilla, C. G., Maisch, B., Rupp, H., Sunck, R., Zhou, G., and Weber, K. T. (1995) Pharmacological modulation of cardiac fibroblast function. Herz 20, 127–135.

    CAS  Google Scholar 

  8. Silverman, H. S., Wei, S., Haigney, M. C., Ocampo, C. J., and Stern, M. D. (1997) Myocote adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxin. Circ. Res. 80, 699–707.

    CAS  Google Scholar 

  9. Schoen, F. J. (1999) The heart, in Robbins Pathologic Basis of Disease (Cotran, R. S., Kumar, V., Collins, T., and Robbins, S. L., eds.), W.B. Saunders, Philadelphia, pp. 543–599.

    Google Scholar 

  10. Freed, L. E. and Vunjak-Novakovic, G. (2000) Tissue engineering of cartilage, in The Biomedical Engineering Handbook (Bronzino, J. D., ed.), Vol. II, CRC Press, Boca Raton, FL, pp. 124-121–124-126.

    Google Scholar 

  11. Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue engineered cartilage. J. Orthop. Res. 17, 130–138.

    Article  CAS  Google Scholar 

  12. Obradovic, B., Martin, I., Padera, R. F., Treppo, S., Freed, L. E., and Vunjak-Novakovic, G. (2001) Integration of engineered cartilage. J. Orthop. Res. 19(6), 1089–1097.

    Article  CAS  Google Scholar 

  13. Freed, L. E., Grande, D. A., Lingbin, Z., Emmanual, J., Marquis, J. C., and Langer, R. (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J. Biomed. Mater. Res. 28, 891–899.

    Article  CAS  Google Scholar 

  14. Schaefer, D., Martin, I., Jundt, G., et al. (2002) Tissue engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 46, 2524–2534.

    Article  Google Scholar 

  15. Carrier, R. L., Papadaki, M., Rupnick, M., Schoen, F. J., Bursac, N., Langer, R., et al. (1999) Cardiac tissue engineering: cell seeding, cultivation parameters and tissue construct characterization. Biotechnol. Bioeng. 64, 580–589.

    Article  CAS  Google Scholar 

  16. Bursac, N., Papadaki, M., Cohen, R. J., Schoen, F. J., Eisenberg, S. R., Carrier, R., et al. (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277, H433–H444.

    CAS  Google Scholar 

  17. Papadaki, M., Bursac, N., Langer, R., Merok, J., Vunjak-Novakovic, G., and Freed, L. E. (2001) Tissue engineering of functional cardiac muscle: molecular, structural and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280, H168–H178.

    CAS  Google Scholar 

  18. Radisic, M., Euloth, M., Yang, L., Langer, R., Freed, L. E., Vunjak-Novakovic, G. (2003) High density seeding of myocyte cells for tissue engineering. Biotechnol. Bioeng. 62, 403–414.

    Article  Google Scholar 

  19. Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I. M., Battler, A., et al. (2000) Bioengineerred cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102, III56–III61.

    CAS  Google Scholar 

  20. Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A. G., Choi, A., and Yau, T. M. (1999) Survival and function of bioengineered cardiac grafts. Circulation 100, II63–II69.

    CAS  Google Scholar 

  21. Freed, L. E., Marquis, J. C., Nohria, A., Emmanual, J., Mikos, A. G., and Langer, R. (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27, 11–23.

    Article  CAS  Google Scholar 

  22. Martin, I., Vunjak-Novakovic, G., Yang, J., Langer, R., and Freed, L. E. (1999) Mammalian chondrocytes expanded in the presence of fibroblast growth factor-2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp. Cell Res. 253, 681–688.

    Article  CAS  Google Scholar 

  23. Madry, H. and Trippel, S. B. (2000) Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther. 7, 286–291.

    Article  CAS  Google Scholar 

  24. Martin, I., Padera, R. F., Vunjak-Novakovic, G., and Freed, L. E. (1998) In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J. Orthop. Res. 16, 181–189.

    Article  CAS  Google Scholar 

  25. Martin, I., Shastri, V. P., Padera, R. F., Yang, J., Mackay, A. J., Langer, R., et al. (2001) Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J. Biomed. Mater. Res. 55, 229–235.

    Article  CAS  Google Scholar 

  26. Sah, R. L. Y., Kim, Y. J., Doong, J. Y. H., Grodzinsky, A. J., Plaas, A. H. K., and Sandy, J. D. (1989) Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636.

    Article  CAS  Google Scholar 

  27. Barnett, J. V., Taniuchi, M., Yang, M. B., and Galper, J. B. (1993) Co-culture of embryonic chick heart cells and ciliary ganglia induces parasympathetic responsiveness in embryonic chick heart cells. Biochem. J. 292, 395–399.

    CAS  Google Scholar 

  28. Freed, L. E. and Vunjak-Novakovic, G. (2001) Cell-polymer-bioreactor systems, in Methods of Tissue Engineering (Atala, A. and Lanza, R. P., eds.), Academic Press, San Diego, CA, pp. 97–111.

    Google Scholar 

  29. Freed, L. E., Vunjak-Novakovic, G., Biron, R., Eagles, D., Lesnoy, D., Barlow, S., et al. (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technology 12, 689–693.

    Article  CAS  Google Scholar 

  30. Niklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R., et al. (1999) Functional arteries grown in vitro. Science 284, 489–493.

    Article  CAS  Google Scholar 

  31. Gao, J., Niklason, L., and Langer, R. (1998) Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J. Biomed. Mater. Res. 42, 417–424.

    Article  CAS  Google Scholar 

  32. Freed, L. E., Vunjak-Novakovic, G. (1998) Culture of Organized Cell Communities. Adv. Drug Deliv. Rev. 33, 15–30.

    Article  CAS  Google Scholar 

  33. Freed, L. E., Marquis, J. C., Vunjak-Novakovic, G., Emmanual, J., and Langer, R. (1994) Composition of cell-polymer cartilage implants. Biotechnol. Bioeng. 43, 605–614.

    Article  CAS  Google Scholar 

  34. Vunjak-Novakovic, G., Freed, L. E., Biron, R. J., and Langer, R. (1996) Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J. 42, 850–860.

    Article  CAS  Google Scholar 

  35. Freed, L. E. and Vunjak-Novakovic, G. (1995) Cultivation of cell-polymer constructs in simulated microgravity. Biotechnol. Bioeng. 46, 306–313.

    Article  CAS  Google Scholar 

  36. Dunkelman, N. S., Zimber, M. P., Lebaron, R. G., Pavelec, R., Kwan, M., and Purchio, A. F. (1995) Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol. Bioeng. 46, 299–305.

    Article  CAS  Google Scholar 

  37. Freed, L. E. and Vunjak-Novakovic, G. (1997) Microgravity tissue engineering. In Vitro Cell. Dev. B. 33, 381–385.

    Article  CAS  Google Scholar 

  38. Gooch, K. J., Kwon, J. H., Blunk, T., Langer, R., Freed, L. E., and Vunjak-Novakovic, G. (2001) Effects of mixing intensity on tissue-engineered cartilage. Biotechnol. Bioeng. 72, 402–407.

    Article  CAS  Google Scholar 

  39. Schaefer, D., Martin, I., Shastri, P., et al. (2000) In vitro generation of osteochondral composites. Biomaterials 21, 2599–2606.

    Article  CAS  Google Scholar 

  40. Awad, H. A., Butler, D. L., Harris, M. T., Ibrahim, R. E., Wu, Y., Young, R. G., et al. (2000) In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J. Biomed. Mater. Res. 51, 233–240.

    Article  CAS  Google Scholar 

  41. Ameer, G. A., Mahmood, T. A., and Langer, R. (2002) A biodegradable composite scaffold for cell transplantation. J. Orthop. Res. 20, 16–19.

    Article  CAS  Google Scholar 

  42. Kim, S. S., Sundback, C. A., Kaihara, S., Benvenuto, M. S., Kim, B. S., Mooney, D. J., et al. (2000) Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system. Tissue Eng. 6, 39–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Vunjak-Novakovic, G., Radisic, M. (2004). Cell Seeding of Polymer Scaffolds. In: Hollander, A.P., Hatton, P.V. (eds) Biopolymer Methods in Tissue Engineering. Methods in Molecular Biology™, vol 238. Humana Press. https://doi.org/10.1385/1-59259-428-X:131

Download citation

  • DOI: https://doi.org/10.1385/1-59259-428-X:131

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-967-4

  • Online ISBN: 978-1-59259-428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics