Cell Seeding of Polymer Scaffolds

  • Gordana Vunjak-Novakovic
  • Milica Radisic
Part of the Methods in Molecular Biology™ book series (MIMB, volume 238)


Engineered tissues could form the basis for novel therapies for millions of patients who suffer from the loss of tissue or its function (1), and be used for in vitro studies of tissue development and normal and pathological function. One approach to tissue engineering involves seeding of a high density of uniformly distributed cells on three-dimensional (3D) polymeric scaffolds, and cultivating the resulting cell-polymer constructs under conditions that permit the formation of functional tissues (2). The scaffold provides a defined structure for cell attachment and tissue development, and the bioreactor provides control over the biochemical and physical factors in the cell environment.


Cardiac Myocytes Cell Seeding Porous Scaffold Embryonic Chick Polymer Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Langer, R. and Vacanti, J. P. (1993) Tissue engineering. Science 260, 920–926.CrossRefGoogle Scholar
  2. 2.
    Freed, L. E. and Vunjak-Novakovic, G. (2000) Tissue engineering bioreactors, in Principles of Tissue Engineering (Lanza, R. P., Langer, R., and Vacanti, J., eds.), Academic Press, San Diego, CA, pp. 143–156.CrossRefGoogle Scholar
  3. 3.
    Vunjak-Novakovic, G., Obradovic, B., Bursac, P., Martin, I., Langer, R., and Freed, L. E. (1998) Dynamic seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14, 193–202.CrossRefGoogle Scholar
  4. 4.
    Obradovic, B., Carrier, R. L., Vunjak-Novakovic, G., and Freed, L. E. (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63, 197–205.CrossRefGoogle Scholar
  5. 5.
    Buckwalter, J. A. and Mankin, H. J. (1997) Articular cartilage 1. Tissue design and chondrocyte-matrix interactions. J. Bone Jt. Surg. 79A, 600–611.Google Scholar
  6. 6.
    MacKenna, D. A., Omens, J. H., McCulloch, A. D., and Covell, J. W. (1994) Contribution of collagen matrix to passive left ventricular mechanics in isolated rat heart. Am. J. Physiol. 266, H1007–H1018.Google Scholar
  7. 7.
    Brilla, C. G., Maisch, B., Rupp, H., Sunck, R., Zhou, G., and Weber, K. T. (1995) Pharmacological modulation of cardiac fibroblast function. Herz 20, 127–135.Google Scholar
  8. 8.
    Silverman, H. S., Wei, S., Haigney, M. C., Ocampo, C. J., and Stern, M. D. (1997) Myocote adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxin. Circ. Res. 80, 699–707.Google Scholar
  9. 9.
    Schoen, F. J. (1999) The heart, in Robbins Pathologic Basis of Disease (Cotran, R. S., Kumar, V., Collins, T., and Robbins, S. L., eds.), W.B. Saunders, Philadelphia, pp. 543–599.Google Scholar
  10. 10.
    Freed, L. E. and Vunjak-Novakovic, G. (2000) Tissue engineering of cartilage, in The Biomedical Engineering Handbook (Bronzino, J. D., ed.), Vol. II, CRC Press, Boca Raton, FL, pp. 124-121–124-126.Google Scholar
  11. 11.
    Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue engineered cartilage. J. Orthop. Res. 17, 130–138.CrossRefGoogle Scholar
  12. 12.
    Obradovic, B., Martin, I., Padera, R. F., Treppo, S., Freed, L. E., and Vunjak-Novakovic, G. (2001) Integration of engineered cartilage. J. Orthop. Res. 19(6), 1089–1097.CrossRefGoogle Scholar
  13. 13.
    Freed, L. E., Grande, D. A., Lingbin, Z., Emmanual, J., Marquis, J. C., and Langer, R. (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J. Biomed. Mater. Res. 28, 891–899.CrossRefGoogle Scholar
  14. 14.
    Schaefer, D., Martin, I., Jundt, G., et al. (2002) Tissue engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 46, 2524–2534.CrossRefGoogle Scholar
  15. 15.
    Carrier, R. L., Papadaki, M., Rupnick, M., Schoen, F. J., Bursac, N., Langer, R., et al. (1999) Cardiac tissue engineering: cell seeding, cultivation parameters and tissue construct characterization. Biotechnol. Bioeng. 64, 580–589.CrossRefGoogle Scholar
  16. 16.
    Bursac, N., Papadaki, M., Cohen, R. J., Schoen, F. J., Eisenberg, S. R., Carrier, R., et al. (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277, H433–H444.Google Scholar
  17. 17.
    Papadaki, M., Bursac, N., Langer, R., Merok, J., Vunjak-Novakovic, G., and Freed, L. E. (2001) Tissue engineering of functional cardiac muscle: molecular, structural and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280, H168–H178.Google Scholar
  18. 17a.
    Radisic, M., Euloth, M., Yang, L., Langer, R., Freed, L. E., Vunjak-Novakovic, G. (2003) High density seeding of myocyte cells for tissue engineering. Biotechnol. Bioeng. 62, 403–414.CrossRefGoogle Scholar
  19. 18.
    Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I. M., Battler, A., et al. (2000) Bioengineerred cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102, III56–III61.Google Scholar
  20. 19.
    Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A. G., Choi, A., and Yau, T. M. (1999) Survival and function of bioengineered cardiac grafts. Circulation 100, II63–II69.Google Scholar
  21. 20.
    Freed, L. E., Marquis, J. C., Nohria, A., Emmanual, J., Mikos, A. G., and Langer, R. (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27, 11–23.CrossRefGoogle Scholar
  22. 21.
    Martin, I., Vunjak-Novakovic, G., Yang, J., Langer, R., and Freed, L. E. (1999) Mammalian chondrocytes expanded in the presence of fibroblast growth factor-2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp. Cell Res. 253, 681–688.CrossRefGoogle Scholar
  23. 22.
    Madry, H. and Trippel, S. B. (2000) Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther. 7, 286–291.CrossRefGoogle Scholar
  24. 23.
    Martin, I., Padera, R. F., Vunjak-Novakovic, G., and Freed, L. E. (1998) In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J. Orthop. Res. 16, 181–189.CrossRefGoogle Scholar
  25. 24.
    Martin, I., Shastri, V. P., Padera, R. F., Yang, J., Mackay, A. J., Langer, R., et al. (2001) Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J. Biomed. Mater. Res. 55, 229–235.CrossRefGoogle Scholar
  26. 25.
    Sah, R. L. Y., Kim, Y. J., Doong, J. Y. H., Grodzinsky, A. J., Plaas, A. H. K., and Sandy, J. D. (1989) Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636.CrossRefGoogle Scholar
  27. 26.
    Barnett, J. V., Taniuchi, M., Yang, M. B., and Galper, J. B. (1993) Co-culture of embryonic chick heart cells and ciliary ganglia induces parasympathetic responsiveness in embryonic chick heart cells. Biochem. J. 292, 395–399.Google Scholar
  28. 27.
    Freed, L. E. and Vunjak-Novakovic, G. (2001) Cell-polymer-bioreactor systems, in Methods of Tissue Engineering (Atala, A. and Lanza, R. P., eds.), Academic Press, San Diego, CA, pp. 97–111.Google Scholar
  29. 28.
    Freed, L. E., Vunjak-Novakovic, G., Biron, R., Eagles, D., Lesnoy, D., Barlow, S., et al. (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technology 12, 689–693.CrossRefGoogle Scholar
  30. 29.
    Niklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R., et al. (1999) Functional arteries grown in vitro. Science 284, 489–493.CrossRefGoogle Scholar
  31. 30.
    Gao, J., Niklason, L., and Langer, R. (1998) Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J. Biomed. Mater. Res. 42, 417–424.CrossRefGoogle Scholar
  32. 30a.
    Freed, L. E., Vunjak-Novakovic, G. (1998) Culture of Organized Cell Communities. Adv. Drug Deliv. Rev. 33, 15–30.CrossRefGoogle Scholar
  33. 31.
    Freed, L. E., Marquis, J. C., Vunjak-Novakovic, G., Emmanual, J., and Langer, R. (1994) Composition of cell-polymer cartilage implants. Biotechnol. Bioeng. 43, 605–614.CrossRefGoogle Scholar
  34. 32.
    Vunjak-Novakovic, G., Freed, L. E., Biron, R. J., and Langer, R. (1996) Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J. 42, 850–860.CrossRefGoogle Scholar
  35. 33.
    Freed, L. E. and Vunjak-Novakovic, G. (1995) Cultivation of cell-polymer constructs in simulated microgravity. Biotechnol. Bioeng. 46, 306–313.CrossRefGoogle Scholar
  36. 34.
    Dunkelman, N. S., Zimber, M. P., Lebaron, R. G., Pavelec, R., Kwan, M., and Purchio, A. F. (1995) Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol. Bioeng. 46, 299–305.CrossRefGoogle Scholar
  37. 35.
    Freed, L. E. and Vunjak-Novakovic, G. (1997) Microgravity tissue engineering. In Vitro Cell. Dev. B. 33, 381–385.CrossRefGoogle Scholar
  38. 36.
    Gooch, K. J., Kwon, J. H., Blunk, T., Langer, R., Freed, L. E., and Vunjak-Novakovic, G. (2001) Effects of mixing intensity on tissue-engineered cartilage. Biotechnol. Bioeng. 72, 402–407.CrossRefGoogle Scholar
  39. 36a.
    Schaefer, D., Martin, I., Shastri, P., et al. (2000) In vitro generation of osteochondral composites. Biomaterials 21, 2599–2606.CrossRefGoogle Scholar
  40. 37.
    Awad, H. A., Butler, D. L., Harris, M. T., Ibrahim, R. E., Wu, Y., Young, R. G., et al. (2000) In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J. Biomed. Mater. Res. 51, 233–240.CrossRefGoogle Scholar
  41. 38.
    Ameer, G. A., Mahmood, T. A., and Langer, R. (2002) A biodegradable composite scaffold for cell transplantation. J. Orthop. Res. 20, 16–19.CrossRefGoogle Scholar
  42. 39.
    Kim, S. S., Sundback, C. A., Kaihara, S., Benvenuto, M. S., Kim, B. S., Mooney, D. J., et al. (2000) Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system. Tissue Eng. 6, 39–44.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Gordana Vunjak-Novakovic
    • 1
  • Milica Radisic
    • 2
  1. 1.Harvard-MIT Division of Health Sciences and TechnologyMITCambridgeUSA
  2. 2.Department of Chemical EngineeringMITCambridge

Personalised recommendations