Advertisement

Fibrin Microbeads (FMB) As Biodegradable Carriers for Culturing Cells and for Accelerating Wound Healing

  • Raphael Gorodetsky
  • Akiva Vexler
  • Lilia Levdansky
  • Gerard Marx
Protocol
  • 1k Downloads
Part of the Methods in Molecular Biology™ book series (MIMB, volume 238)

Abstract

Fibrinogen exerts adhesive effects on cultured fibroblasts and other cells. Specifically, fibrin(ogen) and its various lytic fragments (e.g., FPA, FPB, fragments D and E) were shown to be chemotactic to macrophages, human fibroblasts, and endothelial cells (1, 2, 3). Thrombin has also been shown to exert proliferative and adhesive effects on cultured cells (4, 5, 6, 7). We previously demonstrated that covalently coating inert Sepharose beads with either fibrinogen or thrombin rendered them adhesive to a wide range of cell types. We employed such coated Sepharose beads to screen or rank normal and transformed cells for their haptotactic responses to fibrinogen (8,9).

Keywords

Haptotactic Response Sepharose Beads Human Ovarian Carcinoma Line Smooth Muscle Cells Seed Culture Flasks 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brown, L. F., Lanir, N., McDonagh, J., Tignazzi, K., Dvorak, A. M., and Dvorak, H. F. (1993) Fibroblast migration in fibrin gel matrices. Am. J. Pathol. 142, 273–283.Google Scholar
  2. 2.
    Gray, A. J., Bishop, J. E., Reeves, J. T., and Laurent, G. J. (1993) Aα and Bβ chains of fibrinogen stimulate proliferation of human fibroblasts. J. Cell Sci. 104, 409–403.Google Scholar
  3. 3.
    Lorenzet, R., Sobel, J. H., Bini, A., and Witte, L. D. (1992) Low molecular weight fibrinogen degradation products stimulate the release of growth factors from endo-thelial cells. Thromb. Haemostasis 68, 357–363.Google Scholar
  4. 4.
    Shuman, F. (1986) Thrombin-cellular interactions. Ann. NY Acad. Sci. 408, 228–235.CrossRefGoogle Scholar
  5. 5.
    Daniel, T. C., Gibbs, V. C., Milfay, D. F., Garovoy, M. R., and Williams, L. T. (1986) Thrombin stimulates c-cis gene expression in microvascular endothelial cells. J. Biol. Chem. 261, 9579–9582.Google Scholar
  6. 6.
    Dawes, K. E., Gray, A. J., and Laurent, G. J. (1993) Thrombin stimulates fibro-blast chemotaxis and replication. Eur. J. Cell Biol. 61, 126–130.Google Scholar
  7. 7.
    Bar-Shavit, R., Benezra, M., Eldor, A., Hy-Am, E., Fenton, J. W., Wilner, G. D., et al. (1990) Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: nonenzymatic mode of action. Cell Regul. 1, 453–463.Google Scholar
  8. 8.
    Gorodetsky, R., Vexler, A., An, J., Mou, X., and Marx, G. (1998) Chemotactic and growth stimulatory effects of fibrin(ogen) and thrombin on cultured fibroblasts. J. Lab. Clin. Med. 131, 269–280.CrossRefGoogle Scholar
  9. 9.
    Gorodetsky, R., Vexler, A., Shamir, M., An, J., Levdansky, L., and Marx, G. (1999) Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound healing. J. Investig. Dermatol. 112, 866–872.CrossRefGoogle Scholar
  10. 10.
    Griffith, B. and Looby, D. (1996) Scale-up of suspension and anchorage-dependent animal cells, in Methods in Molecular Biology, Vol. 75. Basic Cell Culture Protocols (Pollard, J. W. and Walker, J. M., eds.), Humana Press, Inc., Totowa, NJ, pp. 59–76.Google Scholar
  11. 11.
    Arshady R. (1990) Microspheres and microcapsules, a survey of manufacturing techniques. Polymer Engin. and Science 30, 905–914.CrossRefGoogle Scholar
  12. 12.
    Yapel, A. F. (1985) Albumin microspheres: heat and chemical stabilization. Methods in Enzymology 112, 3–43.CrossRefGoogle Scholar
  13. 13.
    Royer, G. P. (1982) Implants, microbeads, microcapsules, preparation thereof and method for administering a biologically-active substance to an animal. US Pat. #4,349,530.Google Scholar
  14. 14.
    Miyazaki, S., Hashiguchi, N., Takeda, M., and Hou, W. M. (1986) Antitumor effect of fibrinogen microspheres containing doxorubicin on Ehrlich ascites carcinoma. J. Pharm. Pharmacol. 38, 618–620.Google Scholar
  15. 15.
    Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer, R. (1994) Biodegradable long circulating polymeric nanospheres. Science 263, 1600–1603.CrossRefGoogle Scholar
  16. 16.
    Evans, R. (1972) Biodegradable parental (albumin) microspherules. US Patent #3,663,687.Google Scholar
  17. 17.
    Lee, T. K., Sokolovski, T. D., and Royer, G. P. (1981) Serum albumin beads: an injectable, biodegradable system for the sustained release of drugs. Science 213, 233–235.CrossRefGoogle Scholar
  18. 18.
    Gurevitch, O., Vexler, A., Marx, G., Bar-Shavit, Z., Prigozhina, T., Levdansky, L., et al. (2002) Fibrin microbeads for isolating and growing bone marrow derived progenitor cells capable of forming bone tissue. Tissue Engineering 8, 661–672.CrossRefGoogle Scholar
  19. 19.
    Marx, G. and Gorodetsky, R. (2000) Fibrin microbeads prepared from fibrinogen, thrombin and factor XIII, US Patent 6,150,505.Google Scholar
  20. 20.
    Marx, G., Mou, X., Freed, R., Ben-Hur, E., Yang, C., and Horowitz, B. (1996) Protecting fibrinogen with rutin during UVC irradiation for viral inactivation. Photochem. Photobiol. 63, 541–546.CrossRefGoogle Scholar
  21. 21.
    Sanders, R. P., Goodman, N. C., Amiss, L. R., Pierce, R. A., Moore, M., Marx, G., et al. (1996) Effect of fibrinogen and thrombin concentrations on mastectomy seroma prevention. J. Surg. Res. 61, 65–70.CrossRefGoogle Scholar
  22. 22.
    Marx, G. (2000) Fibrin sealant glue gun. US Patent 6,059,749.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Raphael Gorodetsky
    • 1
  • Akiva Vexler
    • 1
  • Lilia Levdansky
    • 1
  • Gerard Marx
    • 2
  1. 1.Biotechnology and Radiobiology Laboratory, Sharett Institute of OncologyHadassah University HospitalJerusalemIsrael
  2. 2.Research and DevelopmentHAPTO Biotech (Israel) Ltd.JerusalemIsrael

Personalised recommendations