Processing of Resorbable Poly-α-Hydroxy Acids for Use as Tissue-Engineering Scaffolds
- 3 Citations
- 982 Downloads
Abstract
Poly (α-hydroxyacids) were found to be bioabsorble and biocompatible in the 1960s (1,2). They are the most widely known, studied and used bioabsorbable synthetic polymers in medicine. Polyglycolide (PGA) and poly-l-lactide (PLLA) homopolymers and their copolymers (PLGA), as well as polylactic acid stereocopolymers produced using l-, d-, or DL-lactides and rasemic polymer copolymer PLDLA are all poly (α-hydroxyacids) (3). Poly (α-hydroxy acids) can be polymerized via condensation, although only low mol-wt polymers are produced. In order to obtain a higher mol wt and thus mechanical strength and longer absorption time, the polymers are polymerized from the cyclic dimers via ring-opening polymerization using appropriate initiators and co-initiators. The most commonly used initiator is stannous octoate (2,3).
Keywords
Draw Ratio Loop Size Cyclic Dimer Stannous Octoate Multifilament YarnReferences
- 1.Kulkarni, R. K., Pani, K. C., Neuman, C., and Leonard, F. (1966) Polyglycolic acid for surgical implants. Arch. Surg. 93, 839–843.Google Scholar
- 2.Kulkarni, R. K., Moore, E. G., Hegyeli, A. F., and Leonard, F. (1971) Biodegradable poly (lactic acid) polymers. J. Biomed. Mater. Res. 5, 169–181.CrossRefGoogle Scholar
- 3.Vert, M., Christel, P., Chabot, F., and Leray, J. (1984) Bioresorbable plastic materials for bone surgery, in Macromolecular Biomaterials (Hastings, G. W. and Ducheyne, P., eds.), CRC Press, Inc., Boca Raton, FL, pp. 119–142.Google Scholar
- 4.Vert, M. (1989) Bioresorbable polymers for temporary therapeutic applications. Angewende Makromolekulare Chemie 166/167, 155–168.CrossRefGoogle Scholar
- 5.Piskin, E. (1994) Review. Biodegradable polymers as biomaterials. J. Biomater. Sci., Polym. Ed. 6, 775–795.CrossRefGoogle Scholar
- 6.Törmälä, P., Pohjonen, T., and Rokkanen, P. (1998) Bioabsorbable polymers: materials technology and surgical applications. Proceedings of the Institution of Mechanical Engineers. Journal of Engineering in Medicine Part H 212-H, 101–111.CrossRefGoogle Scholar
- 7.Kellomäki, M. (1993) Polymerization of lactic acid and property studies. M.Sc. Thesis (in Finnish), Tampere University of Technology, Materials Department. 131 pages.Google Scholar
- 8.Li, S. M., Garreau, H., and Vert, M. (1990) Structure-property relationships in the case of the degradation of massive poly-(α-hydroxy acids) in aqueous media, Part 1, Influence of the morphology of poly(L-lactic acid). Journal of Materials Science: Materials in Medicine 1, 198–206.CrossRefGoogle Scholar
- 9.Dauner, M., Hierlemann, H., Caramaro, L., Missirlis, Y., Panagiotopoulos, E., and Planck, H. (1996) Resorbable continuous fibre reinforced polymers for the osteosynthesis processing and physico-chemical properties, in Fifth World Biomaterials Congress, Toronto, Canada, p. 270.Google Scholar
- 10.Ali, S. A. M., Doherty, P. J., and Williams, D. F. (1993) Mechanisms of polymer degradation in implantable devices. 2. Poly(DL-lactic acid). J. Biomed. Mater. Res. 27, 1409–1418.CrossRefGoogle Scholar
- 11.Li, S. M., Garreau, H., and Vert, M. (1990) Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media, Part 1, Poly (DL-lactic acid). Journal of Materials Science: Materials in Medicine 1, 123–130.CrossRefGoogle Scholar
- 12.Pohjonen, T. (1995) Manufacturing, structure and properties of SR-PLLA. Licenciate thesis (in Finnish), Tampere University of Technology, 295 pages.Google Scholar
- 13.Törmälä, P. (1992) Biodegradable self-reinforced composite materials; manufacturing, structure and mechanical properties. Clin. Mater. 10, 29–34.CrossRefGoogle Scholar
- 14.Böstman, O., Hirvensalo, E., Mäkinen, J., and Rokkanen, P. (1990) Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. British Journal of Bone and Joint Surgery 72-B, 592–596.Google Scholar
- 15.Thomson, R. C., Mikos, A. G., Beahm, E., Lemon, J. C., Satterfied, W. C., Aufdemorte, T. B., et al. (1999) Guided tissue fabrication from periosteum using performed biodegradable polymer scaffolds. Biomaterials 20, 2007–2018.CrossRefGoogle Scholar
- 16.Bergsma, J. E., Bos, R. R. M., Rozema, F. R., de Jong, W., and Boerig, G. (1995) Biocompatibility of intraosseously implanted predegraded poly(lactide). An animal study. 12th ESB Conference, Porto, Portugal.Google Scholar
- 17.Van der Elst, M., Klein, C. P. A. T., de Blieck-Hogervorst, J. M., Patka, P., and Haarman, H. J. (1999) Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: A long-term in vivo study in sheep femora. Biomaterials 20, 121–128.CrossRefGoogle Scholar
- 18.Hooper, K. A., Macon, N. D., and Kohn, J. (1998) Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation. J. Biomed. Mater. Res. 41, 443–454.CrossRefGoogle Scholar
- 19.Bos, R. R. M., Rozema, F. R., Boering, G., Nijenhuis, A. J., Pennings, A. J., Verwey, A. B., et al. (1991) Degradation of and tissue reaction to biodegradable poly(L-lactide) for use as internal fixation of fractures: a study in rats. Biomaterials 12, 32–36.CrossRefGoogle Scholar
- 20.Maitra, R. S., Brand (Jr) J. C., and Caborn, D. N. M. (1998) Biodegradable implants. Sports Medicine and Arthroscopy Review 6, 103–117.CrossRefGoogle Scholar
- 21.Patrick Jr., C. W., Mikos, A. G., and McIntire, L. V. (eds.), (1998) Frontiers in Tissue Engineering. Pergamon, Oxford, UK, p. 700.Google Scholar
- 22.Nerem, R. M. and Sambanis, A. (1995) Tissue engineering: from biology to biological substitutes. Tissue Engineering 1, 3–13.CrossRefGoogle Scholar
- 23.Shors, E. C. and Holmes, R. E. (1993) Porous hydroxyapatite, in An Introduction to Bioceramics (Hench, L. L., Wilson, J., eds.), World Scientific, Singapore, 181–198.Google Scholar
- 24.Klawitter, J. J. and Hulbert, S. F. (1971) Application of porous ceramics for the attachment of load bearing orthopedic applications. J. Biomed. Mater. Symp. 2, 161.CrossRefGoogle Scholar
- 25.Klawitter, J. J., Bagwell, J. G., Weinstern, A. M., Sauer, B. W., and Pruitt, J. R. (1976) An evaluation of bone growth into porous high density polyethylene. J. Biomed. Mater. Res. 10, 311–323.CrossRefGoogle Scholar
- 26.Eggli, P. S., Müller, W., and Schenk, R. K. (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin. Orthop. Relat. Res. 232, 127–138.Google Scholar
- 27.Wake, N. C., Patrick, C. W., and Mikos, A. G. (1994) Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cells and Transplants 3, 339–343.Google Scholar
- 28.Nehrer, S., Breinan, H. A., Ramappa, A., et al. (1997) Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 18, 769–776.CrossRefGoogle Scholar
- 29.Grande, D. A., Halberstadt, C., Naughton, G., Schwartz, R., and Manji, R. (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J. Biomed. Mater. Res. 34, 211–220.CrossRefGoogle Scholar
- 30.Freed, L. E., Grande, D. A., Lingbin, Z., et al. (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J. Biomed. Mater. Res. 28, 891–899.CrossRefGoogle Scholar
- 31.Cima, L. G., Vacanti, J. P., Vacanti, C., Ingber, D., Mooney, D., and Langer, R. (1991) Tissue engineering by cell transplantation using degradable polymer substrates. Journal of Biomechanical Engineering 113, 143–151.CrossRefGoogle Scholar
- 32.Hubbel, J. A. (2000) Biomimetic materials, in The Art of Tissue Engineering Symposium. 17.11.2000 Utrecht, The Netherlands (published as a CD-ROM).Google Scholar
- 33.Schense, J. C. and Hubbel, J. A. (1999) Cross-liking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjuctival Chemistry 10, 75–81.CrossRefGoogle Scholar
- 34.Schense, J. C., Bloch, J., Aebischer, P., and Hubbel, J. A. (2000) Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat. Biotechnol. 18, 415–419.CrossRefGoogle Scholar
- 35.Vacanti, C. A., Langer, R., Schloo, B., and Vacanti, J. P. (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast. Reconstr. Surg. 88, 753–759.CrossRefGoogle Scholar
- 36.Chu, C. R., Coutts, R. D., Yoshioka, M., Harwood, F. L., Monosov, A. Z., and Amiel, D. (1995) Articular cartilage repair using allogeneic perichondrocyte seeded biodegradable porous polylactic acid (PLA): A tissue-engineering study. J. Biomed. Mater. Res. 29, 1147–1154.CrossRefGoogle Scholar
- 37.Ma, P. X., Schloo, B., Mooney, D., and Langer, R. (1995) Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J. Biomed. Mater. Res. 29, 1587–1595.CrossRefGoogle Scholar
- 38.Laurencin, C. T., Attawia, M. A., Elgendy, H. E., and Herbert, K. M. (1996) Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices. Bone 19, 93s–99s.CrossRefGoogle Scholar
- 39.Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., and Langer, R. (1996) Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17, 1417–1422.CrossRefGoogle Scholar
- 40.Mooney, D. J., Mazzoni, C. L., Breuer, C., McNamara, K., Hern, D., Vacanti, J. P., et al. (1996) Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 17, 115–124.CrossRefGoogle Scholar
- 41.Sittinger, M., Reitzel, D., Dauner, M., Hierlemann, H., Hammer, C., Kastenbauer, E., et al.(1996) Resorbable polymers in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J. Biomed. Mater. Res. 33, 57–63.CrossRefGoogle Scholar
- 42.Wintermantel, E., Mayer, J., Blum, J., Eckert K-L, Lüscher, P., and Mathey, M. (1996) Tissue engineering scaffolds using superstructures. Biomaterials 17, 83–91.CrossRefGoogle Scholar
- 43.Widmer, M. S., Gupta, P. K., Lu, L., Meszlenyi, R. K., Evans, G. R. D., Brandt, K., et al. (1998) Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 19, 945–1955.CrossRefGoogle Scholar
- 44.Angele, P., Kujat, R., Nerlich, M., Yoo, J., Goldberg, V., and Johnstone, B. (1999) Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Engineering 5, 545–554.CrossRefGoogle Scholar
- 45.Doser, M. (1999) Criteria for the selection of biomaterials for tissue engineering, in Polymers for Medical Technologies, 37th Tutzing-Symposion of Dechema e.V. 8-11.3.1999.Google Scholar
- 46.Kreklau, B., Sittinger, M., Mensing, M. B., Voigt, C., Berger, G., Burmester, G. R., et al. (1999) Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20, 1743–1749.CrossRefGoogle Scholar
- 47.Madihally, S. V. and Matthew, H. W. T. (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133–1142.CrossRefGoogle Scholar
- 48.Redlich, A., Perka, C., Schultz, O., Spitzer, R., Häupl, T., Burmester, G. R., and et al. (1999) Bone engineering on the basis of periosteal cells cultured in polymer fleeces. Journal of Materials Science: Materials in Medicine 10, 767–772.CrossRefGoogle Scholar
- 49.Huibregtse, B. A., Johnstone, B., Goldberg, V. M., and Caplan, A. I. (2000) Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrow-derived mesenchymal progenitor cells. J. Orthop. Res. 18, 18–24.CrossRefGoogle Scholar