Detection of Reactive Oxygen Species by Flow Cytometry

  • Alexander Christov
  • Ladan Hamdheydari
  • Paula Grammas
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Reactive oxygen species (ROS) are a family of molecules including molecular oxygen and its derivatives produced in all aerobic cells. Extensive production of ROS has been implicated in the oxidation of biological macromolecules, such as DNA, proteins, carbohydrates, and lipids. This condition has commonly been referred to as oxidant stress. Oxidant stress is involved in the pathogenesis of many cardiovascular diseases and is closely related to vascular endothelial dysfunction (1). Endothelial dysfunction includes altered anticoagulant and antiinflammatory properties of the endothelium, impaired modulation of vascular growth, and dysregulation of vascular remodeling (2).


Reactive Oxygen Species Reactive Oxygen Species Level Intracellular Reactive Oxygen Species Brain Endothelial Cell Endothelial Cell Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cai, H. and Harrison, D. G. (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87, 840–844.PubMedGoogle Scholar
  2. 2.
    Gimbrone, M. A., Jr. (1995) Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am. J. Cardiol. 75, 67B–70B.PubMedCrossRefGoogle Scholar
  3. 3.
    Wolin, M. S. (2000) Interactions of oxidants with vascular signaling systems. Arterioscler. Thromb. Vasc. Biol. 20, 1430–1442.Google Scholar
  4. 4.
    Herzenberg, L. A., De Rosa, S. C., and Herzebberg, L. A. (2000) Monoclonal antibodies and the FACS: complementary tools for immunobiology and medicine. Immuno. Today 21, 383–390.CrossRefGoogle Scholar
  5. 5.
    Herzenberg, L. A. Parks, D., Sahaf, B., Perez, O., Roederer M., and Herzenberg L. A. (2002) The history and future of Fluorescence Activated Cell Sorer and Flow Cytometry: A view from Stanford. Clin. Chem. 48, 1819–1827.PubMedGoogle Scholar
  6. 6.
    Strasser, A., Stanimirovic, D., Kawai, N., McCarron, R. M., and Spatz M. (1997) Hypoxia modulates free radical formation in brain microvascular endothelium. Acta. Neurochir. Suppl. 70, 8–11.PubMedGoogle Scholar
  7. 7.
    Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello S., Waltenberger J., and Galeotti T. (2002) Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J. Biol. Chem. 277, 3101–3108.PubMedCrossRefGoogle Scholar
  8. 8.
    Wei, Z., Al-Mehdi, A. B., and Fisher, A. B. (2001) Signaling pathway for nitric oxide generation with simulated ischemia in flow-adapted endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 281, H2226–H2232.PubMedGoogle Scholar
  9. 9.
    Burlacu, A., Jinga, V., Gafencu, A. V., and Simionescu, M. (2001) Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue. Res. 306, 409–416.PubMedCrossRefGoogle Scholar
  10. 10.
    Ali, M. H., Schlidt, S. A., Chandel, N. S., Hynes, K. L., Schumacker, P. T., and Gewertz, B. L. (1999) Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am. J. Physiol. 277, L1057–1065.PubMedGoogle Scholar
  11. 11.
    Diglio, C. A., Liu, W., Grammas, P., Giacomelli, F., and Wiener J. (1993) Isolation and characterization of cerebral resistance vessel endothelium in culture. Tissue. Cell 25, 833–846.PubMedCrossRefGoogle Scholar
  12. 12.
    Grammas, P., Botchlet, T., Fugate, R., Ball, M. J., and Roher, A. E. (1995) Alzheimer disease amyloid proteins inhibit brain endothelial cell proliferation in vitro. Dementia 6, 126–130.PubMedGoogle Scholar
  13. 13.
    Grammas, P., Moore, P., Cashman, R. E., and Floyd, R. A. (1998) Anoxic injury of endothelial cells causes divergent changes in protein kinase C and protein kinase A signaling pathways. Mol. Chem. Neuropathol. 33, 113–124.PubMedCrossRefGoogle Scholar
  14. 14.
    Kanmogne, G. D., Grammas, P., and Kennedy, R. C. (2000) Analysis of human endothelial cells and cortical neurons for susceptibility to HIV-1 infection and co-receptor expression. J. Neurovirol. 6, 519–528.PubMedCrossRefGoogle Scholar
  15. 15.
    Grammas, P. and Ovase, R. (2002) Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain. Am. J. Pathol. 160, 1583–1587.PubMedCrossRefGoogle Scholar
  16. 16.
    Rajah, T. T. and Grammas, P. (2002) VEGF and VEGF receptor levels in retinal and brain-derived endothelial cells. Biochem. Biophys. Res. Commun. 293, 710–713.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, Q., Esterbauer, H., and Jurgens, G. (1992) Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination. Biochem. J. 288, 249–254.PubMedGoogle Scholar
  18. 18.
    Uchida, K., Toyokuni, S., Nishikawa, K., Kawakishi, S., Oda H., Hiai, H., and Stadtman, E. R. (1994) Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry 33, 12,487–12,494.PubMedCrossRefGoogle Scholar
  19. 19.
    Galle, J., Heinloth, A., Schwedler S., and Wanner C. (1997) Effect of HDL and atherogenic lipoproteins on formation of O2 and renin release in juxtaglomerular cells. Kidney Int. 51, 253–260.PubMedCrossRefGoogle Scholar
  20. 20.
    Richards-Kortum, R. and Sevick-Muraka, E. (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47, 555–606.PubMedCrossRefGoogle Scholar
  21. 21.
    Sheehan, J. P., Swerdlow, R. H., Miller, S. W., Davis, R. E., Parks, J. K., Parker, W. D., and Tuttle, J. B. (1997) Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J. Neurosci. 17, 4612–4622.PubMedGoogle Scholar
  22. 22.
    Deshpande, S. S., Angkeow, P., Huang, J., Ozaki, M., and Irani, K. (2000) Rac1 inhibits TNF-alpha-induced endothelial cell apoptosis: dual regulation by reactive oxygen species. FASEB J. 14, 1705–1714.PubMedCrossRefGoogle Scholar
  23. 22.
    Assaly, R., Olson, D., Hammersley, J., Fan, P. S., Liu, J., Shapiro, J. I., and Kahaleh, M. B. (2001) Initial evidence of endothelial cell apoptosis as a mechanism of systemic capillary leak syndrome. Chest 120, 1301–1308.PubMedCrossRefGoogle Scholar
  24. 24.
    Geller, H. M., Cheng, K. Y., Goldsmith, N. K., Romero, A. A., Zhang, A. L., Morris, E. J., and Grandison L. (2001) Oxidative stress mediates neuronal DNA damage and apoptosis in response to cytosine arabinoside. J. Neurochem. 78, 265–275.PubMedCrossRefGoogle Scholar
  25. 25.
    Grammas, P. (2000) A damaged microcirculation contributes to neuronal cell death in Alzheimer’s disease. Neurobiol. Aging 21, 199–205.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc.,Totowa, NJ 2003

Authors and Affiliations

  • Alexander Christov
    • 1
    • 2
  • Ladan Hamdheydari
    • 1
    • 2
  • Paula Grammas
    • 1
    • 2
  1. 1.Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma City
  2. 2.Oklahoma Center for NeuroscienceOklahoma City

Personalised recommendations