Skip to main content

mRNA Detection in Cerebral Vessels by Nonradioactive In Situ Hybridization

  • Protocol
Book cover The Blood-Brain Barrier

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 89))

  • 1677 Accesses

Abstract

In situ hybridization (ISH) has become a critical tool for studying gene expression in the central nervous system (CNS) (16). ISH has advantages over immunohisto-chemistry, because ISH identifies the cells that make the antigen of interest, rather than just contain it. ISH has been used to assess the cellular distribution of messenger ribonucleic acids (mRNAs) encoding many important proteins during neural embryogenesis, and in reactive and neoplastic pathological conditions in the brain (610). In recent years, the sensitivity of ISH techniques has increased, using both radioactive and nonradioactive probes to allow the detection of mRNAs that encode various molecules (3,5,6,1017) and there is increasing use of nonradioactive ISH to identify a number of genes related to vasculogenesis and angiogenesis in the brain (1824).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldino, F. Jr., Ruth, J. L., and Davis, L. G. (1989) Nonradioactive detection of vasopressin mRNA with in situ hybridization histochemistry. Exp. Neurol. 104, 200–207.

    Article  PubMed  CAS  Google Scholar 

  2. Hoefler, H., Childers, H., Montminy, M. R., Lechan, R. M., Goodman, R. H., and Wolfe, H. J. (1986) In situ hybridization methods for the detection of somatostatin mRNA in tissue sections using antisense RNA probes. Histochem. J. 18, 597–604.

    Article  PubMed  CAS  Google Scholar 

  3. Landry, M., and Hokfelt, T. (1998) Subcellular localization of preprogalanin messenger RNA in perikarya and axons of hypothalamo-posthypophyseal magnocellular neurons: an in situ hybridization study. Neuroscience 84, 897–912.

    Article  PubMed  CAS  Google Scholar 

  4. Kiyama, H., and Emson, P. C. (1990) Distribution of somatostatin mRNA in the rat nervous system as visualized by a novel non-radioactive in situ hybridization histochemistry procedure. Neuroscience 38, 223–244.

    Article  PubMed  CAS  Google Scholar 

  5. Meltzer, J. C., Sanders, V., Grimm, P. C., et al. (1998) Production of digoxigenin-labelled RNA probes and the detection of cytokine mRNA in rat spleen and brain by in situ hybridization. Brain Res. Brain Res. Protoc. 2, 339–351.

    Article  PubMed  CAS  Google Scholar 

  6. Le Moine, C., Normand, E., and Bloch, B. (1995) Use of non-radioactive probes for mRNA detection by in situ hybridization: interests and applications in the central nervous system. Cell Mol. Biol. 41, 917–923.

    PubMed  Google Scholar 

  7. Springer, J. E., Robbins, E., Gwag, B. J., Lewis, M. E., and Baldino, F. Jr. (1991) Non-radioactive detection of nerve growth factor receptor (NGFR) mRNA in rat brain using in situ hybridization histochemistry. J. Histochem. Cytochem. 39, 231–234.

    PubMed  CAS  Google Scholar 

  8. Tsukamoto, T., Kusakabe, M., and Saga, Y. (1991) In situ hybridization with nonradioactive digoxigenin-11-UTP-labeled cRNA probes: localization of developmentally regulated mouse tenascin mRNAs. Int. J. Dev. Biol. 35, 25–32.

    PubMed  CAS  Google Scholar 

  9. Wang, D., and Cutz, E. (1994) Simultaneous detection of messenger ribonucleic acids for bombesin/gastrin-releasing peptide and its receptor in rat brain by nonradiolabeled double in situ hybridization. Lab. Invest. 70, 775–780.

    PubMed  CAS  Google Scholar 

  10. Key, M., Wirick, B., Cool, D., and Morris, M. (2001) Quantitative in situ hybridization for peptide mRNAs in mouse brain. Brain Res. Protoc. 8, 8–15.

    Article  CAS  Google Scholar 

  11. Bloch, B., Guitteny, A. F., Normand, E., and Chouham, S. (1990) Presence of neuropeptide messenger RNAs in neuronal processes. Neurosci. Lett. 109, 259–264.

    Article  PubMed  CAS  Google Scholar 

  12. Bloch, B. (1993) Biotinylated probes for in situ hybridization histochemistry: use for mRNA detection. J. Histochem. Cytochem. 41, 1751–1754.

    PubMed  CAS  Google Scholar 

  13. Relf, B. L., Machaalani, R., and Waters, K. A. (2002) Retrieval of mRNA from paraffin-embedded human infant brain tissue for non-radioactive in situ hybridization using oligonucleotides. J. Neurosci. Methods 115, 129–136.

    Article  PubMed  CAS  Google Scholar 

  14. Boissin-Agasse, L., de Bouard, V., Roch, G., and Boissin, J. (1992) In situ hybridization of GnRH mRNA in the rat and the mink hypothalamus using biotinylated synthetic oligonucleotide probes. Brain Res. Mol. Brain Res. 14, 57–63.

    Article  PubMed  CAS  Google Scholar 

  15. Breitschopf, H., Suchanek, G., Gould, R. M., Colman, D. R., and Lassmann, H. (1992) In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathol. (Berl.) 84, 581–587.

    Article  CAS  Google Scholar 

  16. McQuaid, S., and Allan, G. M. (1992) Detection protocols for biotinylated probes: optimization using multistep techniques. J. Histochem. Cytochem. 40, 569–574.

    PubMed  CAS  Google Scholar 

  17. Fleming, K. A., Evans, M., Ryley, K. C., Franklin, D., Lovell-Badge, R. H., and Morey, A. L. (1992) Optimization of non-isotopic in situ hybridization on formalin-fixed, paraffin-embedded material using digoxigenin-labelled probes and transgenic tissues. J. Pathol. 167, 9–17.

    Article  PubMed  CAS  Google Scholar 

  18. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.

    Article  PubMed  CAS  Google Scholar 

  19. Beck, H., Acker, T., Wiessner, C., Allegrini, P. R., and Plate, K. H. (2000) Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am. J. Pathol. 157, 1473–1483.

    Article  PubMed  CAS  Google Scholar 

  20. Plate, K. H., Beck, H., Danner, S., Allegrini, P. R., and Wiessner, C. (1999) Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J. Neuropathol. Exp. Neurol. 58, 654–666.

    Article  PubMed  CAS  Google Scholar 

  21. Holash, J., Maisonpierre, P. C., Compton, D., et al. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.

    Article  PubMed  CAS  Google Scholar 

  22. Zagzag, D., Hooper, A., Friedlander, D. R., et al. (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp. Neurol. 159, 391–400.

    Article  PubMed  CAS  Google Scholar 

  23. Zagzag, D., Friedlander, D. R., Dosik, J., et al. (1996) Tenascin-C expression in angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res. 56, 182–189.

    PubMed  CAS  Google Scholar 

  24. Zagzag, D., and Capo, V. (2002) Angiogenesis in the central nervous system: a role for vascular endothelial growth factor/vascular permeability factor and tenascin-C. Common molecular effectors in cerebral neoplastic and non-neoplastic angiogenic diseases. Histol. Histopathol. 17, 301–321.

    PubMed  CAS  Google Scholar 

  25. Baldino, F. Jr., Chesselet, M. F., and Lewis, M. E. (1989) High-resolution in situ hybridization histochemistry. Methods Enzymol. 168, 761–777.

    Article  PubMed  CAS  Google Scholar 

  26. Kleihues, P., Louis, D. N., Scheithauer, B. W., et al. (2002) The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol. 61, 215–225.

    PubMed  Google Scholar 

  27. Pringle, J. H., Primrose, L., Kind, C. N., Talbot, I. C., and Lauder, I. (1989) In situ hybridization demonstration of poly-adenylated RNA sequences in formalin-fixed paraffin sections using a biotinylated oligonucleotide poly d(T) probe. J. Pathol. 158, 279–286.

    Article  PubMed  CAS  Google Scholar 

  28. Nies, D. E., Hemesath, T. J., Kim, J.-H., Gulcher, J. R., and Stefanson, K. (1991) The complete cDNA sequence of human hexabrachion (tenascin). A multidomain protein containing unique epidermal growth factor repeats. J. Biol. Chem. 266, 2818–2823.

    PubMed  CAS  Google Scholar 

  29. Sanger, F., Nicken, S., and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. PNAS 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  30. Bugnon, C., Bahjaoui, M., and, Fellmann D. (1991) A simple method for coupling in situ hybridizion and immunocytochemistry: application to the study of peptidergic neurons. J. Histochem. Cytochem. 39, 859–862.

    PubMed  CAS  Google Scholar 

  31. Sollberg, S., Peltonen, J., and Uitto, J. (1991) Combined use of in situ hybridization and unlabeled antibody peroxidase anti-peroxidase methods: simultaneous detection of type I procollagen mRNAs and factor VIII-related antigen epitopes in keloid tissue. Lab. Invest. 64, 125–129.

    PubMed  CAS  Google Scholar 

  32. Trimmer, P. A., Phillips, L. L., and Steward, O. (1991) Combination of in situ hybridization and immunocytochemistry to detect messenger RNAs in identified CNS neurons and glia in tissue culture. J. Histochem. Cytochem. 38, 891–898.

    Google Scholar 

  33. Mitchell, V., Beauvillain, J. C., and Mazzuca, M. (1992) Combination of immunocytochemistry and in situ hybridization in the same semi-thin sections: detection of Met-enkephalin and pro-enkephalin mRNA in the hypothalamic magnocellular dorsal nucleus of the guinea pig. J. Histochem. Cytochem. 40, 581–585.

    PubMed  CAS  Google Scholar 

  34. Kiyama, H., McGowan, E. M., and Emson, P. C. (1991) Coexpression of cholecystokinin mRNA and tyrosine hydroxylase mRNA in populations of rat substantia nigra cells; a study using a combined radioactive and non-radioactive in situ hybridization procedure. Brain Res. Mol. Brain Res. 9, 87–93.

    Article  PubMed  CAS  Google Scholar 

  35. Biffo, S., Verdun di Cantogno, L., and Fasolo, A. (1992) Double labeling with non-isotopic in situ hybridization and BrdU immunohistochemistry: calmodulin (CaM) mRNA expression in post-mitotic neurons of the olfactory system. J. Histochem. Cytochem. 40, 535–540.

    Google Scholar 

  36. Smith, M. D., Parker, A., Wikaningrum, R., and Coleman, M. (2000) Combined immunohistochemical labeling and in situ hybridization to colocalize mRNA and protein in tissue sections. Methods Mol. Biol. 123, 165–175.

    PubMed  CAS  Google Scholar 

  37. Bursztajn, S., Berman, S. A., and Gilbert, W. (1990) Simultaneous visualization of neuronal protein and receptor mRNA. Biotechniques 9, 440–449.

    PubMed  CAS  Google Scholar 

  38. Liang, J. D., Liu, J., McClelland, P., and Bergeron, M. (2001) Cellular localization of BM88 mRNA in paraffin-embedded rat brain sections by combined immunohistochemistry and non-radioactive in situ hybridization. Brain Res. Protoc. 7, 121–130.

    Article  CAS  Google Scholar 

  39. Heppelmann, B., Senaris, R., and Emson, P. C. (1994) Combination of alkaline phosphatase in situ hybridization with immunohistochemistry: colocalization of calretinin-mRNA with calbindin and tyrosine hydroxylase immunoreactivity in rat substantia nigra neurons. Brain Res. 635, 293–299.

    Article  PubMed  CAS  Google Scholar 

  40. Kriegsmann, J., Keyszer, G., Geiler, T., Gay, R. E., and Gay, S. (1994) A new double labeling technique for combined in situ hybridization and immunohistochemical analysis. Lab. Invest. 71, 911–917.

    PubMed  CAS  Google Scholar 

  41. Larsen, P. J., and Mikkelsen, J. D. (1994) Simultaneous detection of neuropeptides and messenger RNA in the magnocellular hypothalamo-neurohypophysial system by a combination of non-radioactive in situ hybridization histochemistry and immunohistochemistry. Histochemistry 102, 415–423.

    Article  PubMed  CAS  Google Scholar 

  42. Oh, Y., and Waxman, S. G. (1995) Differential Na+ channel beta 1 subunit mRNA expression in stellate and flat astrocytes cultured from rat cortex and cerebellum: a combined in situ hybridization and immunocytochemistry study. Glia 13, 166–173.

    Article  PubMed  CAS  Google Scholar 

  43. Trembleau, A., Roche, D., and Calas, A. (1993) Combination of non-radioactive and radioactive in situ hybridization with immunohistochemistry: a new method allowing the simultaneous detection of two mRNAs and one antigen in the same brain tissue section. J. Histochem. Cytochem. 41, 489–498.

    PubMed  CAS  Google Scholar 

  44. Leung, S. Y., Chan, A. S., Wong, M. P., Yuen, S. T., Cheung, N., and Chung, L. P. (1997) Expression of vascular endothelial growth factor and its receptors in pilocytic astrocytoma. Am. J. Surg. Pathol. 21, 941–950.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zagzag, D., Chan, W. (2003). mRNA Detection in Cerebral Vessels by Nonradioactive In Situ Hybridization. In: Nag, S. (eds) The Blood-Brain Barrier. Methods in Molecular Medicine™, vol 89. Humana Press. https://doi.org/10.1385/1-59259-419-0:451

Download citation

  • DOI: https://doi.org/10.1385/1-59259-419-0:451

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-073-1

  • Online ISBN: 978-1-59259-419-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics