Skip to main content

Isolation and Characterization of Cerebral Microvascular Pericytes

  • Protocol
The Blood-Brain Barrier

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 89))

Abstract

Although a plethora of information exists on the role of the endothelial cell (EC) in vascular hemostasis and tissue homeostasis, little is known of the role played by the microvascular pericyte (PC) (Fig. 1). This lack of substantial information is most evident in the understanding of the role played by the PC in blood-brain barrier (BBB) function, and in the pathophysiology of central nervous system (CNS) disease. Development of techniques for the isolation of defined populations of CNS microvessels (13), for the preparation of retinal PC (3,4), and for the preparation of cerebrovascular PC (57) have enabled scientists to examine the function of this unique cell in the brain (8). The subculture of PC from purified preparations of cerebral microvessels will be discussed below. All populations, isolated microvessels, enriched PC and EC cultures, pure primary cultures, and experimentally derived co-cultures, are suitable in experimental protocols modeling BBB function.

CNS pericytes were isolated from cerebrovascular microvessels. One-week-old cultures display typical spreading with irregular projections as shown on light bright-field microscopy. ×100

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joó, F., and Karnushina, I. (1973) A procedure for the isolation of capillaries from rat brain. Cytobios 8,41–48.

    PubMed  Google Scholar 

  2. Bowman, P. D., Betz, A. L., Jerry, D. D. A., et al. (1981) Primary culture of capillary endothelium from rat brain. In Vitro 17, 353–362.

    Article  PubMed  CAS  Google Scholar 

  3. Buzney, S. M., Massicotte, S. J., Hetu, N., and Zetter, B. R. (1983) Retinal vascular endothelial cells and pericytes. Differential growth characteristics. In Vitro 4, 470–480.

    Google Scholar 

  4. Gitlin, J. D., and D’Amore, P. A. (1983) Culture of retinal capillary cells using selective growth media. Microvas. Res. 1, 74–80.

    Article  Google Scholar 

  5. Herman, I. M., and Jacobson, S. (1988) In situ analysis of microvascular pericytes in hypertensive rat brains. Tissue Cell 1, 1–12.

    Article  Google Scholar 

  6. Sussman, I., Carson, M. P., Schultz, V., et al. (1988) Chronic exposure to high glucose decreases myo-inositol in cultured cerebral microvascular pericytes but not in endothelium. Diabetologia 10, 771–775.

    Article  Google Scholar 

  7. Balabanov, R., Washington, R., Wagnerova, J., and Dore-Duffy, P. (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin αM, and macrophage marker ED-2. Microvas. Res. 52, 127–142.

    Article  CAS  Google Scholar 

  8. Balabanov, R., and Dore-Duffy, P. (1988) Role of the CNS microvascular pericyte in the blood brain barrier. J. Neurosci. Res. 6, 637–644.

    Google Scholar 

  9. Vinters, H. V., Reavve, S., Costello, P., Girvin, J. P., and Moore, S. A. (1987) Isolation and culture of cells derived from cerebral microvessels. Cell Tissue Res. 3, 657–667.

    Google Scholar 

  10. Nayak, R. C, Berman, A. B., George, K. L., Eisenbrth, G S., and King, G L. (1988) A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes. J. Exp. Med. 3, 1003–1015.

    Article  Google Scholar 

  11. Helmbold, P., Wohlrab, J., Marsch, W. C, and Nayak, R. C. (2001) Human dermal pericytes express 3G5 ganglioside—a new approach for microvessel histology in the skin. J. Cutan. Pathol. 4, 206–210.

    Article  Google Scholar 

  12. Helmbod, P., Nayak, R. C, Marsch, W. C, and Herman, I. M. (2001) Isolation and in vitro characterization of human dermal microvascular pericytes. Microvasc. Res. 2, 160–165.

    Article  Google Scholar 

  13. Schlingemann, R. O., Oosterwijk, E., Wesseling, P., Rieveled, E. J., and Ruiter, D. J. (1996) Aminopeptidase a is a constituent of activated pericytes in angiogenesis. J. Pathol. 4, 436–442.

    Article  Google Scholar 

  14. Ramsauer, M., Kunz, J., Krause, D., and Dermietizel, R. (1998) Regulation of a blood-brain barrier-specific enzyme expressed by cerebral pericytes (pericytic aminopeptidase N/pAPN) under cell culture conditions. J. Cereb. Blood Flow Metab. 11, 1270–1281.

    Article  Google Scholar 

  15. Alliot, F., Rutin, J., Leeman, P. J., and Pessac, B. (1999) Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. J. Neurosci. Res. 3, 367–378.

    Article  Google Scholar 

  16. Cameron, N. E., Eaton, S. E., Cotter, M. A., and Tesfaye, S. (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44, 1973–1988.

    Article  PubMed  CAS  Google Scholar 

  17. Sieczkiewicz, G. J., Hussain, M., and Kohn, E. C. (2002) Angiogenesis and metastasis. Cancer Treat. Res. 107, 353–381.

    PubMed  CAS  Google Scholar 

  18. Provis, J. M. (2001) Development of the primate retinal vasculature. Prog. Retin. Eye Res. 20, 799–821.

    Article  PubMed  CAS  Google Scholar 

  19. Pallone, T. L., and Silldorff, E. P. (2001) Pericyte regulation of renal medullary blood flow. Exp. Nephrol. 9(3), 165–170.

    Article  PubMed  CAS  Google Scholar 

  20. Allt, G., and Lawrenson, J. G. (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169, 1–11.

    Article  PubMed  CAS  Google Scholar 

  21. Sims, D. E. (2000) Diversity within pericytes. Clin. Exp. Pharmacol. Physiol. 27, 842–846.

    Article  PubMed  CAS  Google Scholar 

  22. McLennan, S. V., Death, A. K., Fisher, E. J., Williams, P. F., Yue, D. K., and Turtle, J. R. (1999) The role of the mesangial cell and its matrix in the pathogenesis of diabetic nephropathy. Cell Mol. Biol. 45, 123–135.

    PubMed  CAS  Google Scholar 

  23. Kawada, N. (1997) The hepatic perisinusoidal stellate cell. Histol. Histopathol. 12, 1069–1080.

    PubMed  CAS  Google Scholar 

  24. Hirschi, K. K., and D’Amore, P. A. (1997) Control of angiogenesis by the pericyte: molecular mechanisms and significance. E.X.S. 79, 419–428.

    CAS  Google Scholar 

  25. Hirschi, K. K., and D’Amore, P. A. (1996) Pericytes in the microvasculature. Cardiovasc. Res. 32, 687–698.

    PubMed  CAS  Google Scholar 

  26. Pinzani, M. (1995) Hepatic stellate (ITO) cells: expanding roles for a liver-specific pericyte. J. Hepatol. 22, 700–706.

    Article  PubMed  CAS  Google Scholar 

  27. Shepro, D., and Morel, N. M. (1993) Pericyte physiology. FASEB J. 7, 1031–1038.

    PubMed  CAS  Google Scholar 

  28. Balabanov, R., Washington, R., Wagnerova, J., and Dore-Duffy, P. (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin αM, and macrophage marker ED-2. Microvasc. Res. 52, 127–142.

    Article  PubMed  CAS  Google Scholar 

  29. Dore-Duffy, P., and Balabanov, R. (1998) The role of the CNS microvascular pericyte in leukocyte polarization of cytokine-secreting phenotype. J. Neurochem. 70, 72.

    Google Scholar 

  30. Dore-Duffy, P., Balabanov, R., Rafols, J., and Swanborg, R. (1996) The recovery period of acute experimental autoimmune encephalomyelitis in rats corresponds to development of endothelial cell unresponsiveness to interferon gamma activation. J. Neurosci. Res. 44, 223–234.

    Article  PubMed  CAS  Google Scholar 

  31. Dore-Duffy, P., Balabanov, R., Washington, R., and Swanborg, R. (1994) Transforming growth factor-β 1 inhibits cytokine-induced CNS endothelial cell activation. Mol. Chem. Neuropathol. 22, 161–175.

    Article  PubMed  CAS  Google Scholar 

  32. Balabanov, R., Beaumon, T, and Dore-Duffy, P. (1999) Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J. Neurosci. Res. 55, 578–587.

    Article  PubMed  CAS  Google Scholar 

  33. Dore-Duffy, P., Washington, R., and Balabanov, R. (1995) Cytokine-mediated activation of CNS microvessels: a system for examining antigenic modulation of CNS endothelial cells, and evidence for long-term expression of the adhesion protein E-selectin. J. Cereb. Blood Flow Metab. 14, 43–45.

    Google Scholar 

  34. Dore-Duffy, P., Owen, C, Balabanov, R., Murphy, S., Beaumont, T, and Rafols, J. (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc. Res. 60, 55–69.

    Article  PubMed  CAS  Google Scholar 

  35. Diaz-Flores, L., Gutierrez, R., and Varela, H. (1994) Angiogenesis: an update. Histol. Histopathol. 4, 807–843.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Dore-Duffy, P. (2003). Isolation and Characterization of Cerebral Microvascular Pericytes. In: Nag, S. (eds) The Blood-Brain Barrier. Methods in Molecular Medicine™, vol 89. Humana Press. https://doi.org/10.1385/1-59259-419-0:375

Download citation

  • DOI: https://doi.org/10.1385/1-59259-419-0:375

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-073-1

  • Online ISBN: 978-1-59259-419-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics