Skip to main content

Single-Pass Dual-Label Indicator Method

Blood-to-Brain Transport of Glucose and Short-Chain Monocarboxylic Acids

  • Protocol
Book cover The Blood-Brain Barrier

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 89))

Abstract

The brain requires an adequate and constant supply of glucose or alternate energy substrates to support its metabolic demands. Because of the special conditions imposed by the presence of the blood-brain barrier (BBB), specific transport mechanisms are required for the influx of water-soluble substrates. Alterations in energy substrate transport or availability has profound consequences that may result in inadequate energy supply and possible cell death. To study these transport mechanisms, quantitative methods of substrate influx and blood flow have been developed. These methods are based on a model of unidirectional tracer influx at the endothelial cell boundary from the blood during capillary transit (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gjedde, A. (1983) Modulation of substrate transport to the brain. Acta Neurol. Scand. 67, 3–25.

    Article  PubMed  CAS  Google Scholar 

  2. Sage, J. I., Van Uitert, R. L., and Duffy, T. E. (1981) Simultaneous measurement of cerebral blood flow and unidirectional movement of substances across the blood-brain barrier: theory, method, and application to leucine. J. Neurochem. 36, 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  3. Oldendorf, W. H. (1973) Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol. 224,1450–1453.

    PubMed  CAS  Google Scholar 

  4. Pelligrino, D. A., LaManna, J. C, Duckrow, R. B., Bryan, R. M. Jr., and Harik, S. I. (1992) Hyperglycemia and blood-brain barrier glucose transport. J. Cereb. Blood Flow Metab. 12, 887–899.

    PubMed  CAS  Google Scholar 

  5. Crone, C. (1965) Facilitated transfer of glucose from blood into brain tissue. J. Physiol. 181, 103–113.

    PubMed  CAS  Google Scholar 

  6. Dick, A. P., Harik, S. I., Klip, A., and Walker, D. M. (1984) Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc. Natl. Acad. Sei. U.S.A 81, 7233–7237.

    Article  CAS  Google Scholar 

  7. LaManna, J. C, and Harik, S. I. (1985) Regional comparisons of brain glucose influx. Brain Res. 326, 299–305.

    Article  PubMed  CAS  Google Scholar 

  8. LaManna, J. C, Harrington, J. F, Vendel, L. M., Abi-Saleh, K., Lust, W. D., and Harik, S. I. (1993) Regional blood-brain lactate influx. Brain Res. 614, 164–170.

    Article  PubMed  CAS  Google Scholar 

  9. Shockley, R. P., and LaManna, J. C. (1988) Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation. Brain Res. 454, 170–178.

    Article  PubMed  CAS  Google Scholar 

  10. Crumrine, R. C, and LaManna, J. C. (1991) Regional cerebral metabolites, blood flow, plasma volume, and mean transit time in total cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 11, 272–282.

    PubMed  CAS  Google Scholar 

  11. Sakurada, O., Kennedy, C, Jehle, J., Brown, J. D., Carbin, G. L., and Sokoloff, L. (1978) Measurement of local cerebral blood flow with iodo [14C] antipyrine. Am. J. Physiol. 234, H59–66.

    PubMed  CAS  Google Scholar 

  12. Lincoln, B. C, Des Rosiers, C, and Brunengraber, H. (1987) Metabolism of S-3-hydroxybutyrate in the perfused rat liver. Arch. Biochem. Biophys. 259, 149–156

    Google Scholar 

  13. Lowry, O. H., and Passonneau, J. V. (1972) A Flexible System of Enzymatic Analysis. Academic Press, New York.

    Google Scholar 

  14. LaManna, J. C. and Harik, S. I. (1986) Regional studies of blood-brain barrier transport of glucose and leucine in awake and anesthetized rats. J. Cereb. Blood Flow Metab. 6, 717–723

    PubMed  CAS  Google Scholar 

  15. Crone, C. (1977) Transport of solutes and water across the blood-brain barrier [proceedings]. J. Physiol. 266, 34P–35P

    PubMed  CAS  Google Scholar 

  16. Riachi, N. J., LaManna, J. C, and Harik, S. I. (1989) Entry of 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine into the rat brain. J. Pharmacol. Exp. Ther. 249, 744–748.

    PubMed  CAS  Google Scholar 

  17. Pardridge, W. M., Connor, J. D., and Crawford, I. L. (1975) Permeability changes in the blood-brain barrier: Causes and consequences. CRC Crit. Rev. Toxicol. 3, 159–199.

    Article  PubMed  CAS  Google Scholar 

  18. Knudsen, G. M., Paulson, O. B., and Hertz, M. M. (1991) Kinetic analysis of the human blood-brain barrier transport of lactate and its influence by hypercapnia. J. Cereb. Blood Flow Metab. 11, 581–586.

    PubMed  CAS  Google Scholar 

  19. Lear, J. L., and Kasliwal, R. K. (1991) Autoradiographic measurement of cerebral lactate transport rate constants in normal and activated conditions. J. Cereb. Blood Flow Metab. 11, 576–580.

    PubMed  CAS  Google Scholar 

  20. Gjedde, A., and Crone, C. (1975) Induction processes in blood brain transfer of ketone bodies during starvation. Am. J. Physiol. 229, 1165–1169.

    PubMed  CAS  Google Scholar 

  21. Harik, S. I., and LaManna, J. C. (1988) Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia. J. Neurochem. 51, 1924–1929.

    Article  PubMed  CAS  Google Scholar 

  22. LaManna, J. C, McCracken, K. A., and Strohl, K. P. (1989) Changes in regional cerebral blood flow and sucrose space after 3–4 weeks of hypobaric hypoxia (0.5 ATM). Adv. Exp. Med. Biol. 248, 471–477.

    PubMed  CAS  Google Scholar 

  23. LaManna, J. C, Kikano, G E., and Harik, S. I. (1989) Brain blood flow and sucrose space in acute and chronic hyperglycemia. In: Neurotransmission and Cerebrovascular Function I. Elsevier, Amsterdam.

    Google Scholar 

  24. Kikano, G. E., LaManna, J. C., and Harik, S. I. (1989) Brain perfusion in acute and chronic hyperglycemia in rats. Stroke 20, 1027–1031.

    PubMed  CAS  Google Scholar 

  25. De Vivo, D. C, Trifiletti, R. R., Jacobson, R. I., Ronen, G M., Behmand, R. A., and Harik, S. I. (1991) Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N. Engl. J. Med. 325, 703–709.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Puchowicz, M.A., Xu, K., LaManna, J.C. (2003). Single-Pass Dual-Label Indicator Method. In: Nag, S. (eds) The Blood-Brain Barrier. Methods in Molecular Medicine™, vol 89. Humana Press. https://doi.org/10.1385/1-59259-419-0:265

Download citation

  • DOI: https://doi.org/10.1385/1-59259-419-0:265

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-073-1

  • Online ISBN: 978-1-59259-419-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics