Skip to main content

Transport Studies Using Membrane Vesicles

  • Protocol
The Blood-Brain Barrier

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 89))

Abstract

The blood-brain barrier (BBB) serves to regulate passage of solutes and water between circulating blood and brain extracellular fluid (1,2). It is composed of endothelial cells that line brain capillaries and exhibit selective transport properties. Cerebral endothelial cells are unusual in that they possess true tight junctions (zonula occludens), which provide a relatively high electrical resistance, and impart polarity to the plasma membrane (3,4). The presence of tight junctions limits the movement of solutes through the intercellular space, and separates the plasmalemma into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. Thus, penetration of the BBB is for the most part transcellular, and requires transport across the respective plasma membrane domains (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betz, A. L. (1986) Transport of ions across the blood-brain barrier. Fed. Proc. 45, 2050ā€“2054.

    PubMedĀ  CASĀ  Google ScholarĀ 

  2. Betz, A. L., and Goldstein, G. W. (1986) Specialized properties and solute transport in brain capillaries. Ann. Rev. Physiol. 48, 241ā€“250.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Betz, A. L., Firth, J. A., and Goldstein, G. W. (1980) Polarity of the blood-brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 192,17ā€“28.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Reese, T S., and Karnovsky, M. J. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207ā€“217.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Brightman, M. W., and Reese, T. W. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648ā€“677.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Pardridge, W. M. (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol. Rev. 63,1481ā€“1535.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Betz, A. L., and Goldstein, G W. (1978) Polarity of the blood-brain barrier: Neutral amino acid transport into isolated brain capillaries. Science 202, 225ā€“226.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Pardridge, W. M., Eisenberg, J. and Yamada, T (1985) Rapid sequestration and degradation of somatostatin analogues by isolated brain microvessels. J. Neurochem. 44,1178ā€“1184.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Peterson, D. R. and Hawkins, R. A. (1998) Isolation and behavior of plasma membrane vesicles made from cerebral capillary endothelial cells. In Introduction to the Blood-Brain Barrier. Pardridge, W. M., ed. Cambridge University Press, London, pp. 62ā€“70.

    ChapterĀ  Google ScholarĀ 

  10. Sanchez del Pino, M. M., Hawkins, R. A., and Peterson, D. R. (1992) Neutral amino acid transport by the blood-brain barrier: Membrane vesicle studies. J. Biol. Chem. 267, 25951ā€“25957.

    Google ScholarĀ 

  11. Sanchez del Pino, M. M., Hawkins, R. A., and Peterson, D. R. (1995) Biochemical discrimination between luminal and abluminal enzyme and transport activities of the blood-brain barrier. J. Biol. Chem. 270,14907ā€“14912.

    Google ScholarĀ 

  12. Peterson, D. R., Rambow, J., Sukowski, E. J., and Zikos, D. (1999) Glutathione transport by the blood-brain barrier. FASEB J. 13, A709.

    Google ScholarĀ 

  13. Sanchez del Pino, M. M. (1994) Neutral amino acid transport by the blood-brain barrier using isolated membrane vesicles. Ph.D. Thesis. Finch University of Health Sciences/The Chicago Medical School, N. Chicago, IL.

    Google ScholarĀ 

  14. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248ā€“254.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Sanchez del Pino, M. M., Peterson, D. R., and Hawkins, R. A. (1995) Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood-brain barrier. J. Biol. Chem. 270, 14913ā€“14918.

    Google ScholarĀ 

  16. Lee, W-J., Hawkins, R. A., Peterson, D. R., and Vina, J. (1996) Role of oxoproline in the regulation of neutral amino acid transport across the blood-brain barrier. J. Biol. Chem. 271, 19129ā€“19133.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Lee, W-J., Hawkins, R. A., Vina, J. R. and Peterson, D. R. (1998) Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am. J. Physiol. 274, C1101ā€“C1107.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Lee, W-J., Peterson, D. R., Sukowski, E. J., and Hawkins, R. A. (1997) Glucose transport by isolated plasma membranes of the blood-brain barrier. Am. J. Physiol. 272, C1552ā€“C1557.

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Peterson, D. R., Rambow, J., Sukowski, E. J., and Zikos, D. (2000) Mechanisms for sodium transport by the blood-brain barrier. FASEB J. 14, LB74.

    Google ScholarĀ 

  20. Skopicki, H. A., Fisher, K., Zikos, D., Flouret, G., and Peterson, D. R. (1989) Low-affinity transport of pyroglutamyl-histidine in renal brush-border membrane vesicles. Am. J. Physiol. 257, C971ā€“C975.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Hopfer, U. (1989) Tracer studies with isolated membrane vesicles. Methods Enzymol. 172, 313ā€“321.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Malo, C, and Berteloot, A. (1991) Analysis of kinetic data in transport studies: new insights from kinetic studies of Na+-D-glucose cotransport in human intestinal brush-border membrane vesicles using a fast sampling, rapid filtration apparatus. J. Membr. Biol. 122,127ā€“141.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Peterson, D.R., Hawkins, R.A. (2003). Transport Studies Using Membrane Vesicles. In: Nag, S. (eds) The Blood-Brain Barrier. Methods in Molecular Medicineā„¢, vol 89. Humana Press. https://doi.org/10.1385/1-59259-419-0:233

Download citation

  • DOI: https://doi.org/10.1385/1-59259-419-0:233

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-073-1

  • Online ISBN: 978-1-59259-419-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics