Advertisement

Mouse Genome Modification

  • Richard Rozmahel
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 89)

Abstract

The ability to alter the mouse genome through homologous recombination in their embryonic stem (ES) cells, and propagate the modification through their germ-line, has revolutionized biomedical research. Such gene-targeted mice have afforded researchers unprecedented opportunities to analyze gene function in vivo, and provided models for disease studies.

Keywords

Embryonic Stem Cell Homologous Recombination Inducible System Embryonic Stem Cell Line Thymidine Kinase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Evans, M. J., and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.PubMedCrossRefGoogle Scholar
  2. 2.
    Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.PubMedCrossRefGoogle Scholar
  3. 3.
    Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.PubMedCrossRefGoogle Scholar
  4. 4.
    Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S. (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234.PubMedCrossRefGoogle Scholar
  5. 5.
    Thomas, K. R., and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.PubMedCrossRefGoogle Scholar
  6. 6.
    Doetschman, T., Maeda, N., and Smithies, O. (1988) Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 85, 8583–8587.PubMedCrossRefGoogle Scholar
  7. 7.
    Koller, B. H., Hagemann, L. J., Doetschman, T., et al. (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc. Natl. Acad. Sci. USA 86, 8927–8931.PubMedCrossRefGoogle Scholar
  8. 8.
    Schwartzberg, P. L., Goff, S. P., and Robertson, E. J. (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246, 799–803.PubMedCrossRefGoogle Scholar
  9. 9.
    Thompson, L. H., and Schild, D. (1999) The contribution of homologous recombination in preserving genome integrity in mammalian cells. Biochimie 81, 87–105.PubMedCrossRefGoogle Scholar
  10. 10.
    Hasty, P., Rivera-Perez, J., Chang, C., and Bradley, A. (1991) Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol. Cell Biol. 11, 4509–4517.PubMedGoogle Scholar
  11. 11.
    Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.PubMedCrossRefGoogle Scholar
  12. 12.
    Hasty, P., Abuin, A., and Bradley, A. (2000) Gene targeting, principles, and practice in mammalian cells. In Gene Targeting—A Practical Approach. 2 ed. Joyner, A. L., ed. Oxford University Press, New York, NY, pp. 1–35.Google Scholar
  13. 13.
    Lurquin, P. F. (1997) Gene transfer by electroporation. Mol. Biotechnol. 7, 5–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Andreason, G. L., and Evans, G. A. (1989) Optimization of electroporation for transfection of mammalian cell lines. Anal. Biochem. 180, 269–275.PubMedCrossRefGoogle Scholar
  15. 15.
    Lupton, S. D., Brunton, L. L., Kalberg, V. A., and Overell, R. W. (1991) Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol. Cell Biol. 11, 3374–3378.PubMedGoogle Scholar
  16. 16.
    Chen, Y T., and Bradley, A. (2000) A new positive/negative selectable marker, puDeltatk, for use in embryonic stem cells. Genesis 28, 31–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Karreman, C. (1998) New positive/negative selectable markers for mammalian cells on the basis of Blasticidin deaminase-thymidine kinase fusions. Nucleic Acids Res. 26, 2508–2510.PubMedCrossRefGoogle Scholar
  18. 18.
    Selfridge, J., Pow, A. M., McWhir, J., Magin, T. M., and Melton, D. W. (1992) Gene targeting using a mouse HPRT minigene/HPRT-deficient embryonic stem cell system: inactivation of the mouse ERCC-1 gene. Somat. Cell Mol. Genet. 18, 325–336.PubMedCrossRefGoogle Scholar
  19. 19.
    Vasquez, K. M., Marburger, K., Intody, Z., and Wilson, J. H. (2001) Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. USA 98, 8403–8410.PubMedCrossRefGoogle Scholar
  20. 20.
    Yagi, T., Ikawa, Y., Yoshida, K., et al. (1990) Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc. Natl. Acad. Sci. USA 87, 9918–9922.PubMedCrossRefGoogle Scholar
  21. 21.
    Kobayashi, K., Ohye, T., Pastan, I., and Nagatsu, T. (1996) A novel strategy for the negative selection in mouse embryonic stem cells operated with immunotoxin-mediated cell targeting. Nucleic Acids Res. 24, 3653–3655.PubMedCrossRefGoogle Scholar
  22. 22.
    Donehower, L. A., Harvey, M., Slagle, B. L., et al. (1992) Mice deficient for p53 are devel-opmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221.PubMedCrossRefGoogle Scholar
  23. 23.
    Lindberg, R. L., Porcher, C., Grandchamp, B., et al. (1996) Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat. Genet. 12, 195–199.PubMedCrossRefGoogle Scholar
  24. 24.
    te Riele, H., Maandag, E. R., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132.CrossRefGoogle Scholar
  25. 25.
    Mortensen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A., and Seidman, J. G. (1992) Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell Biol. 12, 2391–2395.PubMedGoogle Scholar
  26. 26.
    Mortensen, R. M., Zubiaur, M., Neer, E. J., and Seidman, J. G (1991) Embryonic stem cells lacking a functional inhibitory G-protein subunit (alpha i2) produced by gene targeting of both alleles. Proc. Natl. Acad. Sci. USA 88, 7036–7040.PubMedCrossRefGoogle Scholar
  27. 27.
    te Riele, H., Maandag, E. R., Clarke, A., Hooper, M., and Berns, A. (1990) Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651.CrossRefGoogle Scholar
  28. 28.
    Utomo, A. R., Nikitin, A. Y., and Lee, W. H. (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat. Biotechnol. 17, 1091–1096.PubMedCrossRefGoogle Scholar
  29. 29.
    Sauer, B. (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392.PubMedCrossRefGoogle Scholar
  30. 30.
    Torres, R. M., and Kuhn, R., eds. (1997) Laboratory protocols for conditional gene targeting. Oxford University Press, Oxford, UK.Google Scholar
  31. 31.
    Rajewsky, K., Gu, H., Kuhn, R., et al. (1996) Conditional gene targeting. J. Clin. Invest. 98, 600–603.PubMedCrossRefGoogle Scholar
  32. 32.
    Wilson, T. J., and Kola, I. (2001) The LoxP/CRE system and genome modification. Methods Mol. Biol. 158, 83–94.PubMedGoogle Scholar
  33. 33.
    Le, Y, and Sauer, B. (2000) Conditional gene knockout using cre recombinase. Methods Mol. Biol. 136, 477–485.PubMedGoogle Scholar
  34. 34.
    Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.PubMedCrossRefGoogle Scholar
  35. 35.
    No, D., Yao, T P., and Evans, R. M. (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351.PubMedCrossRefGoogle Scholar
  36. 36.
    Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K., and McMahon, A. P. (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326.PubMedCrossRefGoogle Scholar
  37. 37.
    Hayashi, S., and McMahon, A. P. (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318.PubMedCrossRefGoogle Scholar
  38. 38.
    Dietrich, P., Dragatsis, I., Xuan, S., Zeitlin, S., and Efstratiadis, A. (2000) Conditional mutagenesis in mice with heat shock promoter-driven cre transgenes. Mamm. Genome 11, 196–205.PubMedCrossRefGoogle Scholar
  39. 39.
    Gannon, M., Shiota, C., Postic, C., Wright, C. V., and Magnuson, M. (2000) Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. Genesis 26, 139–142.PubMedCrossRefGoogle Scholar
  40. 40.
    Rossant, J., and McMahon, A. (1999) “Cre”-ating mouse mutants-a meeting review on conditional mouse genetics. Genes Dev. 13, 142–145.PubMedCrossRefGoogle Scholar
  41. 41.
    Fiering, S., Epner, E., Robinson, K., et al. (1995) Targeted deletion of 5′HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. Genes Dev. 9, 2203–2213.PubMedCrossRefGoogle Scholar
  42. 42.
    Valancius, V., and Smithies, O. (1991) Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol. Cell Biol. 11, 1402–1408.PubMedGoogle Scholar
  43. 43.
    Hasty, P., Ramirez-Solis, R., Krumlauf, R., and Bradley, A. (1991) Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature 350, 243–246.PubMedCrossRefGoogle Scholar
  44. 44.
    Askew, G. R., Doetschman, T., and Lingrel, J. B. (1993) Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol. Cell Biol. 13, 4115–4124.PubMedGoogle Scholar
  45. 45.
    Reid, L. H., Shesely, E. G., Kim, H. S., and Smithies, O. (1991) Cotransformation and gene targeting in mouse embryonic stem cells. Mol. Cell Biol. 11, 2769–2677.PubMedGoogle Scholar
  46. 46.
    Davis, A. C., Wims, M., and Bradley, A. (1992) Investigation of coelectroporation as a method for introducing small mutations into embryonic stem cells. Mol. Cell Biol. 12, 2769–2776.PubMedGoogle Scholar
  47. 47.
    Sambrook, J., Fritsch, E. F., and Maniatis, T (1989) Molecular Cloning—A Laboratory Manual. 2ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  48. 48.
    Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428.PubMedCrossRefGoogle Scholar
  49. 49.
    Smith, A. G., and Hooper, M. L. (1987) Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 121, 1–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Williams, R. L., Hilton, D. J., Pease, S., et al. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687.PubMedCrossRefGoogle Scholar
  51. 51.
    Wood, S. A., Allen, N. D., Rossant, J., Auerbach, A., and Nagy, A. (1993) Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365, 87–89.PubMedCrossRefGoogle Scholar
  52. 52.
    Kawase, E., Suemori, H., Takahashi, N., Okazaki, K., Hashimoto, K., and Nakatsuji, N. (1994) Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int. J. Dev. Biol. 38, 385–390.PubMedGoogle Scholar
  53. 53.
    Doetschman, T., Gregg, R. G., Maeda, N., et al. (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578.PubMedCrossRefGoogle Scholar
  54. 54.
    Doetschman, T C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.PubMedGoogle Scholar
  55. 55.
    Soriano, P., Montgomery, C., Geske, R., and Bradley, A. (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702.PubMedCrossRefGoogle Scholar
  56. 56.
    Auerbach, W., Dunmore, J. H., Fairchild-Huntress, V., et al. (2000) Establishment and chimera analysis of 129/SvEv-and C57BL/6-derived mouse embryonic stem cell lines. Biotechniques 29, 1024–1028, 1030, 1032.PubMedGoogle Scholar
  57. 57.
    Ledermann, B., and Burki, K. (1991) Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp. Cell Res. 197, 254–258.PubMedCrossRefGoogle Scholar
  58. 58.
    Noben-Trauth, N., Kohler, G., Burki, K., and Ledermann, B. (1996) Efficient targeting of the IL-4 gene in a BALB/c embryonic stem cell line. Transgenic Res. 5, 487–491.PubMedCrossRefGoogle Scholar
  59. 59.
    Dinkel, A., Aicher, W.K., Warnatz, K., Burki, K., Eibel, H., and Ledermann, B. (1999) Efficient generation of transgenic BALB/c mice using BALB/c embryonic stem cells. J. Immunol. Methods 223, 255–260.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Richard Rozmahel
    • 1
  1. 1.Department of PharmacologyUniversity of TorontoTorontoCanada

Personalised recommendations