Molecular Biology of the Blood-Brain Barrier

  • William M. Pardridge
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 89)

Abstract

The blood-brain barrier (BBB) is formed by the micro vasculature of the brain (1). The permeability properties, per se, of the BBB are regulated by the capillary endothelial cell (2). However, there are at least four different cells that comprise the brain microvasculature (Fig. 1), and all contribute to the regulation of the cerebral microvasculature and, indirectly, to the regulation of BBB permeability (3). The endothethial cell and the pericyte share a common capillary basement membrane. There is approximately one pericyte for every two to four endothelial cells. More than 99% of the brain surface of the capillaries is invested by astrocytic foot processes (4). There is innervation of the capillary by nerve endings of either intra- or extra-cerebral origin (5,6). The distance between the astrocyte foot process and the capillary endothelial cell and the pericyte is only 20 nm (7). Therefore, the interrelationships between the endothelium, the pericyte, and the astrocyte foot process are as intimate as any cell-cell interactions in biology. The space filled by the basement membrane and situated between the endothelium/pericyte and the astrocyte foot process forms the interface between blood and brain.
Fig. 1.

The cells comprising the brain microvasculature are the capillary endothelium, the capillary pericyte, and the astrocyte foot process. In addition, nerve endings directly contact the capillary endothelial surface on the brain side of the microvasculature. From ref. 3.

Keywords

Permeability Albumin Agarose Adenosine Electrophoresis 

References

  1. 1.
    Brightman, M. W. (1977) Morphology of blood-brain interfaces. Exp. Eye Res. 25(Suppl.), 1–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Oldendorf, W. H. (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol. 221,1629–1639.PubMedGoogle Scholar
  3. 3.
    Pardridge, W. M. (1999) A morphological approach to the analysis of blood-brain barrier transport function. In Brain Barrier Systems. Paulson, O., Knudsen, G. M., and Moos, T., eds. Munksgaard, Copenhagen, pp. 19–42.Google Scholar
  4. 4.
    Johanson, C. E. (1980) Permeability and vascularity of the developing brain: Cerebellum vs. cerebral cortex. Brain Research 190, 3–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen, Z., Ehret, M., Maitre, M., and Hamel, E. (1995) Ultrastructural analysis of tryptophan hydroxylase immunoreactive nerve terminals in the rat cerebral cortex and hippocampus: Their associations with local blood vessels. Neuroscience 66, 555–569.PubMedCrossRefGoogle Scholar
  6. 6.
    Paspalas, C. D. and Papadopoulos, G. C. (1996) Ultrastructural relationships between noradrenergic nerve fibers and non-neuronal elements in the rat cerebral cortex. GLIA 17,133–146.PubMedCrossRefGoogle Scholar
  7. 7.
    Paulson, O. B. and Newman, E. A. (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237, 896–898.PubMedCrossRefGoogle Scholar
  8. 8.
    Solhonne, B., Gros, C, Pollard, H., and Schwartz, J. C. (1987) Major localization of aminopeptidase M in rat brain microvessels. Neuroscience 22, 225–232.PubMedCrossRefGoogle Scholar
  9. 9.
    Kunz, J., Krause, D., Kremer, M., and Dermietzel, R. (1994) The 140-kDa protein of blood-brain barrier-associated pericytes is identical to aminopeptidase M. J. Neurochem. 62, 2375–2386.CrossRefGoogle Scholar
  10. 10.
    Cordon-Cardo, C, O’Brien, J. P., Casals, D., et al. (1989) Multi-drug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86, 695–698.PubMedCrossRefGoogle Scholar
  11. 11.
    Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., and Willingham, M. C. (1989) Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37, 159–164.PubMedGoogle Scholar
  12. 12.
    Raine, C. S., Lee, S. C, Scheinberg L. C, Duijvestin, A. M., and Cross, A. H. (1990) Adhesion molecules on endothelial cells in the central nervous system: an emerging area in the neuroimmunology of multiple sclerosis. Clin. Immunol. Immunopathol. 57,173–187.PubMedCrossRefGoogle Scholar
  13. 13.
    Wisniewski, H. M., Wegiel J., Vorbrodt, A. W., Mazur-Kolecka, B., and Frackowiak, J. (2000) Role of perivascular cells and myocytes in vascular amyloidosis. Ann. N. Y. Acad. Sci. 903, 6–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Pardridge, W. M. (2001) Brain Drug Targeting; The Future of Brain Drug Development. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
  15. 15.
    Shi, N., Zhang, Y., Boado, R. J., Zhu, C, and Pardridge, W. M. (2001) Brain-specific expression of an exogenous gene following intravenous administration. Proc. Natl. Acad. Sci. USA 98,12,754–12,759.PubMedCrossRefGoogle Scholar
  16. 16.
    Shi, N., Boado, R. J., and Pardridge, W. M. (2000) Antisense imaging of gene expression in the brain in vivo. Proc. Natl. Acad. Sci. USA 97,14,709–14,714.PubMedCrossRefGoogle Scholar
  17. 17.
    Li, J. Y., Sugimura, K., Boado, R. J., et al. (1999) Genetically engineered brain drug delivery vectors—cloning, expression, and in vivo application of an anti-transferrin receptor single chain antibody-streptavidin fusion gene and protein. Protein Engineering 12, 787–796.PubMedCrossRefGoogle Scholar
  18. 18.
    Pardridge, W. M., Eisenberg, J., and Yang, J. (1985) Human blood-brain barrier insulin receptor. J. Neurochem. 44,1771–1778.PubMedCrossRefGoogle Scholar
  19. 19.
    Shusta, E. V., Boado, R. J., Mathern, G W., and Pardridge, W. M. (2002) Vascular genomics of the human brain. J. Cereb. Blood Flow Metabol. 22, 245–252.Google Scholar
  20. 20.
    Lasbennes, R., and Gayet, J. (1983) Capacity for energy metabolism in microvessels isolated from rat brain. Neurochem. Res. 9, 1–9.CrossRefGoogle Scholar
  21. 21.
    Boado, R. J., and Pardridge, W. M. (1991) A one-step procedure for isolation of poly A+mRNA from isolated brain capillaries and endothelial cells in culture. J. Neurochem. 57, 2136–2139.PubMedCrossRefGoogle Scholar
  22. 22.
    Boado, R. J., Li, J. Y, Nagaya, M., Zhang, C, and Pardridge, W. M. (1999) Selective expression of the large neutral amino acid transporter (LAT) at the blood-brain barrier. Proc. Natl. Acad. Sci USA 96,12,079–12,084.PubMedCrossRefGoogle Scholar
  23. 23.
    Pardridge, W. M. (1983) Brain metabolism: A perspective from the blood-brain barrier. Physiol. Rev. 63,1481–1535.PubMedGoogle Scholar
  24. 24.
    Shusta, E. V., Boado, R. J., and Pardridge, W. M. (2002) Vascular proteomics and subtractive antibody expression cloning. Molec. Cellular Proteomics, in press.Google Scholar
  25. 25.
    Yoshida, K., Seto-Ohshima, A., and Sinohara, H. (1997) Sequencing of cDNA encoding serum albumin and its extrahepatic synthesis in the Mongolian gerbil, Meriones unguiculatus. DNA Res. 4, 351–354.PubMedCrossRefGoogle Scholar
  26. 26.
    Boado, R. J., and Pardridge, W. M. (1994) Measurement of blood-brain barrier GLUT1 glucose transporter and actin mRNA by a quantitative polymerase chain reaction assay. J. Neurochem. 62, 2085–2090.PubMedCrossRefGoogle Scholar
  27. 27.
    Boado, R. J., and Pardridge, W. M. (1990) Molecular cloning of the bovine blood-brain barrier glucose transporter cDNA and demonstration of phylogenetic conservation of the 5′-untranslated region. Mol. Cell. Neurosci. 1, 224–232.PubMedCrossRefGoogle Scholar
  28. 28.
    Li, J. Y., Boado, R. J., and Pardridge, W. M. (2001) Cloned blood-brain barrier adenosine transporter is identical to the rat concentrative Na+nucleoside cotransporter CNT2. J. Cereb. Blood Flow Metabol. 21, 929–936.Google Scholar
  29. 29.
    Gao, B., Stieger, B., Noe, B., Fritschy, J. M., and Meier, P. J. (1999) Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J. Histochem. Cytochem. 47,1255–1264.PubMedGoogle Scholar
  30. 30.
    Li, J. Y., Boado, R. J., and Pardridge, W. M. (2001) Blood-brain barrier genomics. J. Cereb. Blood Flow Metabol. 21, 61–68.Google Scholar
  31. 31.
    Boado, R. J., Golden, P. L., Levin, N., and Pardridge, W. M. (1998) Upregulation of blood-brain barrier short form leptin receptor gene products in rats fed a high fat diet. J. Neurochem. 71,1761–1764.PubMedCrossRefGoogle Scholar
  32. 32.
    Choi, T., and Pardridge, W. M. (1986) Phenylalanine transport at the human blood-brain barrier. Studies in isolated human brain capillaries. J. Biol. Chem. 261, 6536–6541.PubMedGoogle Scholar
  33. 33.
    Santoni, V., Molloy, M., and Rabilloud, T. (2000) Membrane proteins and proteomics: Un amour possible? Electrophoresis 21,1054–1070.PubMedCrossRefGoogle Scholar
  34. 34.
    Pardridge, W. M., Yang, J., Eisenberg, J., and Mietus, L. J. (1986) Antibodies to blood-brain barrier bind selectively to brain capillary endothelial lateral membranes and to a 46K protein. J. Cereb. Blood Flow Metab. 6, 203–211.PubMedGoogle Scholar
  35. 35.
    Shusta, E. V., Zhu, C, Boado, R. J., and Pardridge, W. M. (2002) Subtractive expression cloning reveals high expression of CD46 at the blood-brain barrier. J. Neuropathol. Exp. Neurol. 61, 597–604.PubMedGoogle Scholar
  36. 36.
    Pardridge, W. M., Triguero, D., Yang, J., and Cancilla, P. A. (1990) Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J. Pharmacol. Exp. Ther. 253, 884–891.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • William M. Pardridge
    • 1
  1. 1.Department of Medicine and Brain Research InstituteUCLA School of MedicineLos Angeles

Personalised recommendations