Drug Transport Studies Using Quantitative Microdialysis

  • Haiqing Dai
  • William F. Elmquist
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 89)


Cellular barriers in the central nervous system (CNS) present a formidable challenge in the delivery of drugs to the brain. These barriers include the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). Of these, given surface area and diffusional distance considerations, the BBB may be the more important barrier to drug transport to the bulk of the brain parenchyma. With the development of increasing numbers of new compounds to treat CNS diseases, quantitative methods to examine the transport of drugs in the CNS are necessary. Several methods in the past have been used, e.g., whole brain homogenates, quantitative autoradiography, in situ perfusion, noninvasive imaging techniques such as positron emission tomography (PET), and in vivo microdialysis. Although all these techniques have distinct advantages and disadvantages, this chapter will focus on the use of in vivo microdialysis in the rat brain to examine the mechanisms of drug transport through the barriers of the CNS.


Microdialysis Probe Guide Cannula Dental Cement Microdialysis Experiment Anchor Screw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Elmquist, W. F., and Sawchuk, R. J. (1997) Application of microdialysis in pharmacokinetic studies. Pharm. Res. 14, 267–288.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang, Y., and Welty, D. F (1996) The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm. Res. 13, 398–403.PubMedCrossRefGoogle Scholar
  3. 3.
    Stenken, J. A., Lunte, C. E., Southard, M. Z., and Stahle, L. (1997) Factors that influence microdialysis recovery. Comparison of experimental and theoretical microdialysis recoveries in rat liver. J. Pharm. Sci. 86, 958–966.PubMedCrossRefGoogle Scholar
  4. 4.
    Bungay, P. M., Dedrick, R. L., Fox, E., and Balis, F M. (2001) Probe calibration in transient microdialysis in vivo. Pharm. Res. 18, 361–366.PubMedCrossRefGoogle Scholar
  5. 5.
    Kehr, J., Yoshitake, T., Wang, F H., et al. (2001) Microdialysis in freely moving mice: Determination of acetylcholine, serotonin and noradrenaline release in galanin transgenic mice. J. Neurosci. Methods 109, 71–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Scism, J. L., Powers, K. M., Artru, A. A., Lewis, L., and Shen, D. D. (2000) Probenecid-inhibitable efflux transport of valproic acid in the brain parenchymal cells of rabbits: A microdialysis study. Brain Res. 884, 77–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Yang, Z., Brundage, R. C, Barbihaiya, R. H., and Sawchuk, R. J. (1997) Microdialysis studies of the distribution of stavudine into the central nervous system in the freely-moving rat. Pharm. Res. 14, 865–872.PubMedCrossRefGoogle Scholar
  8. 8.
    Bouw, M. R., Xie, R., Tunblad, K., and Hammarlund-Udenaes, M. (2001) Blood-brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats—pharmacokinetic/pharmacodynamic modelling. Br J Pharmacol. 134, 1796–1804.PubMedCrossRefGoogle Scholar
  9. 9.
    Yang, H., Wang, Q., and Elmquist, W. F (1996) Fluconazole distribution to the brain: A crossover study in freely-moving rats using in vivo microdialysis. Pharm. Res. 13, 1570–1575.PubMedCrossRefGoogle Scholar
  10. 10.
    Paxinos, G. and Watson. (eds.) (1998) The Rat Brain in Stereotaxic Coordinates. 4th ed. Academic Press, San Diego, CA.Google Scholar
  11. 11.
    Kau, Y. C., Wong, K. M., Shyr, M. H., Lee, Y H., and Tsai, T. H. (2001) Simultaneous determination of unbound ropivacaine in rat blood and brain using microdialysis. . Chromatogr. B Biomed. Sci. Appl. 760, 107–112.CrossRefGoogle Scholar
  12. 12.
    Evrard, P. A., Ragusi, C., Boschi, G., Verbeeck, R. K, and Scherrmann, J. M. (1998) Simultaneous microdialysis in brain and blood of the mouse: Extracellular and intracellular brain colchicine disposition. Brain Res. 786, 122–127.PubMedCrossRefGoogle Scholar
  13. 13.
    Evrard, P. A., Deridder, G, and Verbeeck, R. K. (1996) Intravenous microdialysis in the mouse and the rat: Development and pharmacokinetic application of a new probe. Pharm. Res. 13, 12–17.PubMedCrossRefGoogle Scholar
  14. 14.
    Yang, H., Wang, Q., and Elmquist, W. F (1997) The design and validation of a novel intravenous microdialysis probe: application to fluconazole pharmacokinetics in the freely-moving rat model. Pharm. Res. 14, 1455–1460.PubMedCrossRefGoogle Scholar
  15. 15.
    Gibaldi, M. and Perrier, D. (1982) Pharmacokinetics. 2nd ed. Marcel Dekker, New York.Google Scholar
  16. 16.
    Hammarlund-Udenaes, M., Paalzow, L. K., and de Lange, E. C. (1997) Drug equilibration across the blood-brain barrierùpharmacokinetic considerations based on the microdialysis method. Pharm. Res. 14, 128–134.PubMedCrossRefGoogle Scholar
  17. 17.
    Davies, M. I., Cooper, J. D., Desmond, S. S., Lunte, C. E., and Lunte, S. M. (2000) Analytical considerations for microdialysis sampling. Adv. Drug Deliv. Rev. 45, 169–188.PubMedCrossRefGoogle Scholar
  18. 18.
    Lunte, S. M., and Lunte, C. E. (1996) Microdialysis sampling for pharmacological studies: HPLC and CE analysis. Adv. Chromatogr. 36, 383–432.PubMedGoogle Scholar
  19. 19.
    Stahle, L. (1993) Zero and first moment area estimation from microdialysis data. Eur. J. Clin. Pharmacol. 45, 477–481.PubMedCrossRefGoogle Scholar
  20. 20.
    Stahle, L. (1992) Pharmacokinetic estimations from microdialysis data. Eur. J. Clin. Pharmacol. 43, 289–294.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang, Y, Wong, S. L., and Sawchuk, R. J. (1993) Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm. Res. 10, 1411–1419.PubMedCrossRefGoogle Scholar
  22. 22.
    Dukic, S., Heurtaux, T., Kaltenbach, M. L., et al. (1999) Pharmacokinetics of methotrexate in the extracellular fluid of brain C6-glioma after intravenous infusion in rats. Pharm. Res. 16, 1219–1225.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsai, T. H., Lee, C. H., and Yeh, P. H. (2001) Effect of P-glycoprotein modulators on the pharmacokinetics of camptothecin using microdialysis. Br. J. Pharmacol. 134, 1245–1252.PubMedCrossRefGoogle Scholar
  24. 24.
    Ma, J., Pulfer, S., Li, S., Chu, J., Reed, K., and Gallo, J. M. (2001) Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res. 61, 5491–5498.PubMedGoogle Scholar
  25. 25.
    Zamboni, W. C, Houghton, P. J., Hulstein, J. L., et al. (1999) Relationship between tumor extracellular fluid exposure to topotecan and tumor response in human neuroblastoma xenograft and cell lines. Cancer Chemother. Pharmacol. 43, 269–276.PubMedCrossRefGoogle Scholar
  26. 26.
    Dantzig, A. H., Shepard, R. L., Law, K. L., et al. (1999) Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J Pharmacol Exp Ther. 290, 854–862.PubMedGoogle Scholar
  27. 27.
    Schinkel, A. H., Wagenaar, E., Mol, C. A., and van Deemter, L. (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest. 97, 2517–2524.PubMedCrossRefGoogle Scholar
  28. 28.
    Benveniste, H., and Huttemeier, P. C. (1990) Microdialysis—theory and application. Prog. Neurobiol. 35, 195–215.PubMedCrossRefGoogle Scholar
  29. 29.
    Groothuis, D. R., Ward, S., Schlageter, K. E., et al. (1998) Changes in blood-brain barrier permeability associated with insertion of brain cannulas and microdialysis probes. Brain Res. 803, 218–230.PubMedCrossRefGoogle Scholar
  30. 30.
    Morgan, M. E., Singhal, D., and Anderson, B. D. (1996) Quantitative assessment of blood-brain barrier damage during microdialysis. J. Pharmacol. Exp. Ther. 277, 1167–1176.PubMedGoogle Scholar
  31. 31.
    de Lange, E. C, Danhof, M., de Boer, A. G., and Breimer, D. D. (1997) Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res. Rev. 25, 27–49.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Haiqing Dai
    • 1
  • William F. Elmquist
    • 2
  1. 1.Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmaha
  2. 2.Department of PharmaceuticsUniversity of MinnesotaMinneapolis

Personalised recommendations