Skip to main content

Vector Construction for Gene Overexpression as a Tool to Elucidate Gene Function

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 236))

Abstract

Gene overexpression as a means to determine plant gene function has been used almost since the first plant transformation protocols became viable. The goal of these experiments, as in classical genetic experiments, is to observe any phenotypic change associated with changing the expression of a gene of interest—in this case overexpression. Any phenotypic changes are interpreted, and the native gene’s function is deduced based on the pathways or biochemistries that are altered in the transformants. Overexpression experiments may be particularly suitable in instances when genes are functionally redundant, when a plant species does not have good genetics, or when a knockout mutation is particularly deleterious. This chapter is intended as a general protocol for producing gene overexpression constructs, starting with genomic DNA, RNA, or an isolated clone, for use in plants that are transformable by Agrobacterium.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Benfey, P. N., Ren, L., and Chua, N. H. (1990) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J. 9, 1685–1696.

    PubMed  CAS  Google Scholar 

  2. Martienssen, R. and Irish, V. (1999) Copying out our ABCs, the role of gene redundancy in interpreting genetic hierarchies. Trends Genet. 15, 435–437.

    Article  PubMed  CAS  Google Scholar 

  3. Vision, T. J., Brown, D. G., and Tanksley, S. D. (2000) The origins of genomic duplications in Arabidopsis. Science 15, 2114–2117.

    Article  Google Scholar 

  4. Bechtold, N., Ellis, J., and Pelletier, G. (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris 316, 1194–1199.

    CAS  Google Scholar 

  5. Lloyd, A. M., Barnason, A. R., Rogers, S. G., Byrne, M. C., Fraley, R. T., and Horsch, R. B. (1986) Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 234, 464–466.

    Article  PubMed  CAS  Google Scholar 

  6. Janssen, B.-J., Lund, L., and Sinha, N. (1998) Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol. 117, 771–786.

    Article  PubMed  CAS  Google Scholar 

  7. Qin, X. and Zeevaart, J. A. D. (2002) Overexpression of a 9-cis epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol. 128, 544–551.

    Article  PubMed  CAS  Google Scholar 

  8. Donzella, G., Spena, A., and Rotino, G. L. (2000) Transgenic parthenocarpic eggplants: superior germplasm for increased winter production Mol. Breed. 6, 79–86.

    Article  Google Scholar 

  9. Tsai, C.-J., Popko, J. L., Mielke, M. R., Hu, W.-J., Podila, G. K., and Chiang, V. L. (1998) Suppression of O-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes. Plant Physiol. 117, 101–112.

    Article  PubMed  CAS  Google Scholar 

  10. Zheng, S.-J., Khrustaleva, L., Henken, B., et al. (2001) Agrobacterium tumefaciens-mediated transformation of Allium cepa L.: the production of transgenic onions and shallots. Mol. Breed. 7, 101–115.

    Article  CAS  Google Scholar 

  11. Zhang, P., Potrykus, I., and Puonti-Kaerlas, J. (2000) Efficient production of transgenic cassava using negative and positive selection. Transgenic Res. 9, 405–415.

    Article  PubMed  CAS  Google Scholar 

  12. Whitmer, S., Canel, C., Hallard, D., Goncalves, C., and Verpoorte, R. (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol. 116, 853–857.

    Article  PubMed  CAS  Google Scholar 

  13. Bordas, M., Montesinos, C., Dabauza, M., et al. (1997) Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res. 6, 41–50.

    Article  PubMed  CAS  Google Scholar 

  14. Dronne, S., Moja, S., Jullien, F., Berger, F., and Caissard, J.-C. (1999) Agrobacterium-mediated transformation of lavandin (Lavandula × intermedia Emeric ex Loiseleur). Transgenic Res. 8, 335–347.

    Article  CAS  Google Scholar 

  15. Bolar, J. P., Norelli, J. L., Harman, G. E., Brown, S. K., and Aldwinckle H. S. (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res. 10, 533–543.

    Article  PubMed  CAS  Google Scholar 

  16. Limanton-Grevet, A. and Jullien, M. (2001). Agrobacterium-mediated transformation of Asparagus officinalis L.: molecular and genetic analysis of transgenic plants. Mol. Breed. 7, 141–150.

    Article  CAS  Google Scholar 

  17. Hardegger, M. and Sturm, A. (1998) Transformation and regeneration of carrot (Daucus carota L.). Mol. Breed. 4, 119–127.

    Article  CAS  Google Scholar 

  18. Pigeaire, A., Abernethy, D., Smith, P. M., et al. (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol. Breed. 3, 341–349.

    Article  CAS  Google Scholar 

  19. Gao, M., Sakamoto, A., Miura, K., Murata, N., Sugiura, A., and Tao, R. (2000) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with a bacterial gene for choline oxidase. Mol. Breed. 6, 501–510.

    Article  CAS  Google Scholar 

  20. Anna Nadolska-Orczyk, A. and Orczyk, W. (2000) Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.) Mol. Breed. 6, 185–194.

    Google Scholar 

  21. Harcourt, R. L., Kyozuka, J., Floyd, R. B., et al. (2000) Insect-and herbicide-resistant transgenic eucalypts. Mol. Breed. 6, 307–315.

    Article  CAS  Google Scholar 

  22. Levee, V., Garin, E., Klimaszewska, K., and Seguin, A. (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol. Breed. 5, 429–440.

    Article  CAS  Google Scholar 

  23. Petolino, J. F., Young, S., Hopkins, N., et al. (2000) Expression of murine adenosine deaminase (ADA) in transgenic maize. Transgenic Res. 9, 1–9.

    Article  PubMed  CAS  Google Scholar 

  24. Bronwyn, R. F., Shou, H., Chikwamba, R. K., et al. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129, 13–22.

    Article  Google Scholar 

  25. Luehrsen, K. R. and Walbot, V. (1991) Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol. Gen. Genet. 225, 81–93.

    Article  PubMed  CAS  Google Scholar 

  26. Aragão, F. J. L., Ribeiro, S. G., Barros, L. M. G., et al. (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol. Breed. 4, 491–499.

    Article  Google Scholar 

  27. Singsit, C., Aadang, M. J., Lynch, R. E., et al. (1997) Expression of a Bacillus thuringiensis cryIA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res. 6, 169–176.

    Article  PubMed  CAS  Google Scholar 

  28. Lius, S., Manshardt, R. M., Fitch, M. M. M., Slightom, J. L., Sanford, J. C., and Gonsalves, D. (1997) Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Mol. Breed. 3, 161–168.

    Article  Google Scholar 

  29. Bommineni, V. R., Chibbar, R. N., Bethune, T. D., Tsang, E. W. T., and Dunstan, D. I. (1997) The sensitivity of transgenic spruce (Picea glauca (Moench Voss) cotyledonary somatic embryos and somatic seedlings to kanamycin selection. Transgenic Res. 6, 123–131.

    Article  CAS  Google Scholar 

  30. Takenaka, M., Yamaoka, S., Hanajiri, T., et al. (2000) Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgenic Res. 9, 179–185.

    Article  PubMed  CAS  Google Scholar 

  31. Koncz, C. and Schell, J. (1986) The promoter TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396.

    Article  CAS  Google Scholar 

  32. Cahill, M. A., Ernst, W. H., Janknecht, R., and Nordheim, A. (1994) Regulatory squelching. FEBS Lett. 344, 105–108.

    Article  PubMed  CAS  Google Scholar 

  33. Lloyd, A. M., Walbot, V., and Davis, R. W. (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators, R and C1. Science 258, 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  34. Payne, C. T., Zhang, F., and Lloyd, A. M. (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156, 1349–1362.

    PubMed  CAS  Google Scholar 

  35. Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., and Lepiniec, L. (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12, 1863–1878.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, M. M. and Schiefelbein, J. (2001) Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development 128, 1539–1546..

    PubMed  CAS  Google Scholar 

  37. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. CSP Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  38. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  39. Jefferson, R. A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system in plants. Plant Mol. Biol. Rep. 5, 387–405.

    Article  CAS  Google Scholar 

  40. Mitsuhara, I., Ugaki, M., Hirochika, H., et al. (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37, 49–59.

    PubMed  CAS  Google Scholar 

  41. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., and Mullineaux, P. M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832.

    Article  PubMed  CAS  Google Scholar 

  42. Bevan, M. (1984) Binary vectors for plant transformation. Nucleic Acids Res. 12, 8711–8721.

    Article  PubMed  CAS  Google Scholar 

  43. Höfgen, R. and Willmitzer, L. (1990) Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato. Plant Sci. 66, 221–230.

    Article  Google Scholar 

  44. An, G., Ebert, P., Mitra, A., and Ita, S. (1988) Binary vectors, in Plant Molecular Biology Manual (Gelvin, S. B. and Schilperoort, R. A., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–19.

    Google Scholar 

  45. Schardl, C. L., Byrd, A. D., Benzion, G., Altschuler, M. A., Hildebrand, D. F., and Hunt, A. G. (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61, 1–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lloyd, A. (2003). Vector Construction for Gene Overexpression as a Tool to Elucidate Gene Function. In: Grotewold, E. (eds) Plant Functional Genomics. Methods in Molecular Biology™, vol 236. Humana Press. https://doi.org/10.1385/1-59259-413-1:329

Download citation

  • DOI: https://doi.org/10.1385/1-59259-413-1:329

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-145-5

  • Online ISBN: 978-1-59259-413-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics