Skip to main content

High-Throughput TAIL-PCR as a Tool to Identify DNA Flanking Insertions

  • Protocol
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 236))

Abstract

Thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) is a fast and efficient method to amplify unknown sequences adjacent to known insertion sites in Arabidopsis. Nested, insertion-specific primers are used together with arbitrary degenerate primers (AD primers), which are designed to differ in their annealing temperatures. Alternating cycles of high and low annealing temperature yield specific products bordered by an insertion-specific primer on one side and an AD primer on the other. Further specifity is obtained through subsequent rounds of TAIL-PCR, using nested insertion-specific primers. The increasing availability of whole genome sequences renders TAIL-PCR an attractive tool to easily identify insertion sites in large genome tagging populations through the direct sequencing of TAIL-PCR products. For large-scale functional genomics approaches, it is desirable to obtain flanking sequences for each individual in the population in a fast and cost-effective manner. In this chapter, we describe a TAIL-PCR method amenable for high-throughput production (HT-TAIL-PCR) in Arabidopsis (1). Based on this protocol, HT-TAIL-PCR may be easily adapted for other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sessions, A., Burke, E., Presting, G., et al. (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14, 2985–2994.

    Article  PubMed  CAS  Google Scholar 

  2. Parinov, S. and Sundaresan, V. (2000) Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotechnol. 11, 157–161.

    Article  PubMed  CAS  Google Scholar 

  3. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  4. Liu, Y. G. and Whittier, R. F. (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25, 674–681.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, Y. G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463.

    Article  PubMed  CAS  Google Scholar 

  6. McElver, J., Tzafrir, I., Aux, G., et al. (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159, 1751–1763.

    PubMed  CAS  Google Scholar 

  7. Budziszewski, G. J., Lewis, S. P., Glover, L. W., et al. (2001) Arabidopsis genes essential for seedling viability: isolation of insertional mutants and molecular cloning. Genetics 159, 1765–1778.

    PubMed  CAS  Google Scholar 

  8. Parinov, S., Sevugan, M., Ye, D., Yang, W.-C., Kumaran, M., and Sundaresan, V. (1999) Analysis of flanking sequences from dissociation insertion lines. A database for reverse genetics in Arabidopsis. Plant Cell 11, 2263–2270.

    Article  PubMed  CAS  Google Scholar 

  9. Tsugeki, R., Kochieva, E. Z., and Fedoroff, N. V. (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 10, 479–489.

    Article  PubMed  CAS  Google Scholar 

  10. Tissier, A. F., Marillonnet, S., Klimyuk, V., et al. (1999) Multiple independent defective Suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11, 1841–1852.

    Article  PubMed  CAS  Google Scholar 

  11. Labarca, C. and Paigen, K. (1980) A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102, 344–352.

    Article  PubMed  CAS  Google Scholar 

  12. Mazars, G.-R., Moyret, C., Jeanteur, P., and Theillet, C.-G. (1991) Direct sequencing by thermal asymmetric PCR. Nucleic Acids Res. 19, 4783.

    Article  PubMed  CAS  Google Scholar 

  13. Gheysen, G., Herman, L., Breyne, P., Gielen, J., Van Montagu, M., and Depicker, A. (1990) Cloning and sequence analysis of truncated T-DNA inserts from Nicotiana tabacum. Gene 94, 155–163.

    Article  PubMed  CAS  Google Scholar 

  14. Nacry, P., Camilleri, C., Courtial, B., Caboche, M., and Bouchez, D. (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149, 641–650.

    PubMed  CAS  Google Scholar 

  15. De Neve, M., De Buck, S., Jacobs, A., Van Montagu, M., and Depicker, A. (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from cointegration of separate T-DNAs. Plant J. 11, 15–29.

    Article  PubMed  Google Scholar 

  16. Krizkova, L. and Hrouda, M. (1998) Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J. 16, 673–680.

    Article  PubMed  CAS  Google Scholar 

  17. De Buck, S., Jacobs, A., Van Montagu, M., and Depicker, A. (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J. 20, 295–304.

    Article  PubMed  Google Scholar 

  18. Ewing, B., Hillier, L., Wendl, M., and Green, P. (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  19. Grossniklaus, U., Vielle-Calzada, J. P., Hoeppner, M. A., and Gagliano, W. B. (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280, 446–450.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Singer, T., Burke, E. (2003). High-Throughput TAIL-PCR as a Tool to Identify DNA Flanking Insertions. In: Grotewold, E. (eds) Plant Functional Genomics. Methods in Molecular Biology™, vol 236. Humana Press. https://doi.org/10.1385/1-59259-413-1:241

Download citation

  • DOI: https://doi.org/10.1385/1-59259-413-1:241

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-145-5

  • Online ISBN: 978-1-59259-413-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics