Skip to main content

Genomic Colinearity as a Tool for Plant Gene Isolation

  • Protocol
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 236))

  • 4126 Accesses

Abstract

Plant genomes show genomic colinearity in spite of the tremendous variability exhibited in their genome size and chromosomal constitution. Comparative genetics can assist in isolation of a mapped gene in a large genome plant species using a small genome plant as a surrogate. Here, we describe various steps involved in the process of gene isolation using genomic colinearity. This involves fine resolution mapping in the large genome species and using common low copy number DNA markers that map to orthologous regions in small and large genome species to isolate candidate genes from the small genome species. Further, alternate strategies are described in cases where the targeted gene is absent in the orthologous region of the small genome species. We also discuss various technologies that can be used for the confirmation of candidate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flavell, R. B., Bennett, M. D., Smith, J. B., and Smith, D. B. (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 12, 257–269.

    Article  PubMed  CAS  Google Scholar 

  2. Bennett, M. D. (1998) Plant genome values: how much do we know? Proc. Natl. Acad. Sci. USA 95, 2011–2016.

    Article  PubMed  CAS  Google Scholar 

  3. Moore, G., Devos, K. M., Wang, Z., and Gale, M. D. (1995) Cereal genome evolution—grasses, line up and form a circle. Curr. Biol. 5, 737–739.

    Article  PubMed  CAS  Google Scholar 

  4. Gale, M. D. and Devos, K. M. (1998) Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95, 1971–1974.

    Article  PubMed  CAS  Google Scholar 

  5. Paterson, A. H., Lin, Y. R., Li, Z. K., et al. (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269, 1714–1718.

    Article  PubMed  CAS  Google Scholar 

  6. Devos, K. M., Atkinson, M. D., Chinoy, C. N., et al. (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85, 673–680.

    Article  CAS  Google Scholar 

  7. Zhang, H., Jia, J., Gale, M. D., and Devos, K. M. (1998) Relationship between the chromosomes of Aegilops umbellulata and wheat. Theor. Appl. Genet. 96, 69–75.

    Article  CAS  Google Scholar 

  8. Tanksley, S. D., Ganal, M. W., Prince, J. P., et al. (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132, 1141–1160.

    PubMed  CAS  Google Scholar 

  9. Boutin, S. R., Young, N. D., Olson, T., Yu, Z.-H., Shoemaker, R. C., and Vallejos, C. (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38, 928–937.

    Article  PubMed  CAS  Google Scholar 

  10. Lagercrantz, U., Putterill, J., Coupland, G., and Lydiate, D. (1996) Comparative mapping in Arabidopsis and Brassica: fine scale genome colinearity and congruence of genes controlling flowering time. Plant J. 9, 13–20.

    Article  PubMed  CAS  Google Scholar 

  11. Livingstone, K. D., Lackney, V. K., Blauth, J. R., van Wijk, R., and Jahn, M. K. (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152, 1183–1202.

    PubMed  CAS  Google Scholar 

  12. Bennetzen, J. L. (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12, 1021–1030.

    Article  PubMed  CAS  Google Scholar 

  13. Bennetzen, J. L. and Ramakrishna, W. (2002) Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol. Biol. 48, 821–827.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, M., SanMiguel, P., Oliveira, A. C., et al. (1997) Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc. Natl. Acad. Sci. USA 94, 3431–3435.

    Article  PubMed  CAS  Google Scholar 

  15. Feuillet, C. and Keller, B. (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci. USA 96, 8265–8270.

    Article  PubMed  CAS  Google Scholar 

  16. Tikhonov, A. P., SanMiguel, P. J., Nakajima, Y., Gorenstein, N. M., Bennetzen, J. L., and Avramova, Z. (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA 96, 7409–7414.

    Article  PubMed  CAS  Google Scholar 

  17. Tarchini, R., Biddle, P., Wineland, R., Tingey, S., and Rafalski, A. (2000) The complete sequence of 340 kb of DNA around the rice Adh1–Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12, 381–391.

    Article  PubMed  CAS  Google Scholar 

  18. Dubcovsky, J., Ramakrishna, W., SanMiguel, P., et al. (2001) Comparative sequence analysis of colinear barley and rice BACs. Plant Physiol. 125, 1342–1353.

    Article  PubMed  CAS  Google Scholar 

  19. Ramakrishna, W., Dubcovsky, J., Park, Y.-J., et al. (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162, 1389–1400.

    PubMed  CAS  Google Scholar 

  20. Ku, H.-M., Vision, T., Liu, J., and Tanksley, S. D. (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97, 9121–9126.

    Article  PubMed  CAS  Google Scholar 

  21. Rossberg, M., Theres, K., Acarkan, A., et al. (2001) Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell 13, 979–988.

    Article  PubMed  CAS  Google Scholar 

  22. Van der Hoeven, R., Ronning, C., Giovannoni, J., Martin, G., and Tanksley, S. (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14, 1441–1456.

    Article  PubMed  Google Scholar 

  23. Lagercrantz, U. (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150, 1217–1228.

    PubMed  CAS  Google Scholar 

  24. Blanc, G., Barakat, A., Guyot, R., Cooke, R., and Delseny, M. (2000) Extensive duplication and reshuffling in the Arabidopsis thaliana genome. Plant Cell 12, 1093–1101.

    Article  PubMed  CAS  Google Scholar 

  25. Grant, D., Cregan, P., and Shoemaker, R. C. (2000) Genome organization in dicots. I. Genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 4168–4173.

    Article  PubMed  CAS  Google Scholar 

  26. O’Neill, C. and Bancroft, I. (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var alboglabra that are homoeologous to sequenced regions of the chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233–243.

    Article  Google Scholar 

  27. Allen, K. D. (2002) Assaying gene content in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 9568–9572.

    Article  PubMed  CAS  Google Scholar 

  28. Laurie, D. A. and Devos, K. M. (2002) Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Mol. Biol. 48, 729–740.

    Article  PubMed  CAS  Google Scholar 

  29. SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y., and Bennetzen, J. L. (1998) The paleontology of intergene retrotransposons of maize. Nat. Genet. 20, 43–45.

    Article  PubMed  CAS  Google Scholar 

  30. SanMiguel, P. J., Ramakrishna, W., Bennetzen, J. L., Busso, C. S., and Dubcovsky, J. (2002) Transposable elements, genes and recombination in a 215kb contig from wheat chromosome 5Am. Funct. Integr. Genomics 2, 70–80.

    Article  PubMed  CAS  Google Scholar 

  31. Avramova, Z., Tikhonov, A., SanMiguel, P., et al. (1996) Gene identification in a complex chromosomal continuum by local genomic cross-referencing. Plant J. 10, 1163–1168.

    Article  PubMed  CAS  Google Scholar 

  32. Bennetzen, J. L. and Ramakrishna, W. (2002) Exceptional haplotype variation in maize. Proc. Natl. Acad. Sci. USA 99, 9093–9095.

    Article  PubMed  CAS  Google Scholar 

  33. Kilian, A., Chen, J., Han, F., Steffenson, B., and Kleinhofs, A. (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol. Biol. 35, 187–195.

    Article  PubMed  CAS  Google Scholar 

  34. Leister, D. M., Kurth, J., Laurie, D. A., et al. (1998) Rapid reorganisation of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci. USA 95, 370–375.

    Article  PubMed  CAS  Google Scholar 

  35. Pan, Q. L., Liu, Y.S., Budai-Hadrian, O., et al. (2000) Comparative genetics of nucleotide binding site leucine-rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155, 309–322.

    PubMed  CAS  Google Scholar 

  36. Arumuganathan, K. and Earle, E. D. (1991) Nuclear DNA content of some important plant species. Plant Mol. Biol. Reporter 9, 211–215.

    Google Scholar 

  37. Han, F., Kilian, A., Chen, J. P., et al. (1999) Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 42, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  38. Brueggeman, R., Rostoks, N., Kudrna, D., et al. (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99, 9328–9333.

    Article  PubMed  CAS  Google Scholar 

  39. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using PHRED. II. Error probabilities. Genome Res. 8, 186–194.

    PubMed  CAS  Google Scholar 

  40. Gordon, D., Abajian, C., and Green, P. (1998) CONSED: a graphical tool for sequencing finishing. Genome Res. 8, 195–202.

    PubMed  CAS  Google Scholar 

  41. Sonnhammer, E. L. L. and Durbin, R. (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, 1–10.

    Article  Google Scholar 

  42. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  43. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  44. Devos, K. M., Brown, J. K. M., and Bennetzen, J. L. (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  45. Sharp, P. A. (1999) RNAi and double-strand RNA. Genes Dev. 13, 139–141.

    Article  PubMed  CAS  Google Scholar 

  46. Colbert, T., Till, B. J., Tompa, R., et al. (2001) High-throughput screening for induced point mutations. Plant Physiol. 126, 480–484.

    Article  PubMed  CAS  Google Scholar 

  47. Druka, A., Kudrna, D., Han, F., et al. (2000) Physical mapping of the barley stem rust resistance gene rpg4. Mol. Gen. Genet. 264, 283–290.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ramakrishna, W., Bennetzen, J.L. (2003). Genomic Colinearity as a Tool for Plant Gene Isolation. In: Grotewold, E. (eds) Plant Functional Genomics. Methods in Molecular Biology™, vol 236. Humana Press. https://doi.org/10.1385/1-59259-413-1:109

Download citation

  • DOI: https://doi.org/10.1385/1-59259-413-1:109

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-145-5

  • Online ISBN: 978-1-59259-413-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics