Gene and Enhancer Traps for Gene Discovery

  • Marcela Rojas-Pierce
  • Patricia S. Springer
Part of the Methods in Molecular Biology™ book series (MIMB, volume 236)


Gene traps and enhancer traps provide a valuable tool for gene discovery. With this system, genes can be identified based solely on the expression pattern of an inserted reporter gene. The use of a reporter gene, such as β-glucuoronidase (GUS), provides a very sensitive assay for the identification of tissue- and cell-type specific expression patterns. In this chapter, protocols for examining and documenting GUS reporter gene activity in individual lines are described. Methods for the amplification of sequences flanking transposant insertions and subsequent molecular and genetic characterization of individual insertions are provided.

Key Words

Arabidopsis Ds gene trap enhancer trap transposable element GUS gene expression TAIL-PCR transposon tagging mutagenesis 


  1. 1.
    Casadaban, M. J. and Cohen, S. N. (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc. Natl. Acad. Sci. USA 76, 4530–4533.PubMedCrossRefGoogle Scholar
  2. 2.
    Bellen, H. J. (1999) Ten years of enhancer detection: lessons from the fly. Plant Cell 11, 2271–2281.PubMedCrossRefGoogle Scholar
  3. 3.
    Springer, P. S. (2000) Gene traps: tools for plant development and genomics. Plant Cell 12, 1007–1020.PubMedCrossRefGoogle Scholar
  4. 4.
    Stanford, W. L., Cohn, J. B., and Cordes, S. P. (2001) Gene trap mutagenesis: past, present and beyond. Nat. Rev. Genet. 2, 756–768.PubMedCrossRefGoogle Scholar
  5. 5.
    Chin, H. G., Choe, M. S., Lee, S. H., et al. (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19, 615–623.PubMedCrossRefGoogle Scholar
  6. 6.
    Martirani, L., Stiller, J., Mirabella, R., et al. (1999) T-DNA tagging of nodulation-and root-related genes in Lotus japonicus: expression patterns and potential for promoter trapping and insertional mutagenesis. Mol. Plant Microbe Interact. 12, 275–284.CrossRefGoogle Scholar
  7. 7.
    Nishiyama, T., Hiwatashi, Y., Sakakibara, K., Kato, M., and Hasebe, M. (2000) Tagged mutagenesis and gene trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res. 7, 9–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Jeon, J. S., Lee, S., Jung, K. H., et al. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570.PubMedCrossRefGoogle Scholar
  9. 9.
    Martienssen, R. A. and Springer, P. S. (2000) Enhancer and gene trap transposon mutagenesis in Arabidopsis, in (
  10. 10.
    Weigel, D. and Glazebrook, J. (2002) Arabidopsis: A Laboratory Manual. CSH Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  11. 11.
    Tsugeki, R., Kochieva, E. Z., and Fedoroff, N. V. (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 10, 479–489.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu, Y.-G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463.PubMedCrossRefGoogle Scholar
  13. 13.
    Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Shure, M., Wessler, S., and Fedoroff, N. (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35, 225–233.PubMedCrossRefGoogle Scholar
  15. 15.
    Martienssen, R. A. (1998) Functional genomics: probing plant gene function and expression with transposons. Proc. Natl. Acad. Sci. USA 95, 2021–2026.PubMedCrossRefGoogle Scholar
  16. 16.
    Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. CSH Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  17. 17.
    Ride, J. P., Davies, E. M., Franklin, F. C., and Marshall, D. F. (1999) Analysis of Arabidopsis genome sequence reveals a large new gene family in plants. Plant Mol. Biol. 39, 927–932.PubMedCrossRefGoogle Scholar
  18. 18.
    Cock, J. M. and McCormick, S. (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol. 126, 939–942.PubMedCrossRefGoogle Scholar
  19. 19.
    MacIntosh, G. C., Wilkerson, C., and Green, P. J. (2001) Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiol. 127, 765–776.PubMedCrossRefGoogle Scholar
  20. 20.
    Llave, C., Kasschau, K. D., Rector, M. A., and Carrington, J. C. (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619.PubMedCrossRefGoogle Scholar
  21. 21.
    Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002) MicroRNAs in plants. Genes Dev. 16, 1616–1626.PubMedCrossRefGoogle Scholar
  22. 22.
    Seki, M., Narusaka, M., Kamiya, A., et al. (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296, 141–145.PubMedCrossRefGoogle Scholar
  23. 23.
    Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.PubMedGoogle Scholar
  24. 24.
    Sieburth, L. E. and Meyerowitz, E. M. (1997) Molecular dissection of the AGA-MOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9, 355–365.PubMedCrossRefGoogle Scholar
  25. 25.
    Brand, U., Grünewald, M., Hobe, M. and Simon, R. (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol. 129, 565–575.PubMedCrossRefGoogle Scholar
  26. 26.
    Lohmann, J. U., Hong, R. L., Hobe, M., et al. (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793–803.PubMedCrossRefGoogle Scholar
  27. 27.
    Xiang, C, Han, P., Lutziger, I., Wang, K., and Oliver, D. J. (1999) A mini binary vector series for plant transformation. Plant Mol. Biol. 40, 711–717.PubMedCrossRefGoogle Scholar
  28. 28.
    Nagel, R., Elliott, A., Masel, A., Birch, R. G., and Manners, J. M. (1990) Electroporation of binary Ti plasmid vector into Agrobacterium tumefaciens and Agrobacterium rhizogenes. FEMS Microbiol. Lett. 67, 325–328.CrossRefGoogle Scholar
  29. 29.
    Clough, S. J. and Bent, A. J. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.PubMedCrossRefGoogle Scholar
  30. 30.
    Baxter-Burrell, A., Yang, Z., Springer, P. S., and Bailey-Serres, J. (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296, 2026–2028.PubMedCrossRefGoogle Scholar
  31. 31.
    Feldmann, K. A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71–82.CrossRefGoogle Scholar
  32. 32.
    Bancroft, I., Jones, J. D. G., and Dean, C. (1993) Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell 5, 631–638.PubMedCrossRefGoogle Scholar
  33. 33.
    Sundaresan, V., Springer, P., Volpe, T., et al. (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810.PubMedCrossRefGoogle Scholar
  34. 34.
    Benfey, P. N., Ren, L., and Chua, N. H. (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 8, 2195–2202.PubMedGoogle Scholar
  35. 35.
    Cocherel, S., Perez, P., Degroote, F., Genestier, S., and Picard, G (1996) A promoter identified in the 3′ end of the Ac transposon can be activated by cis-acting elements in transgenic Arabidopsis lines. Plant Mol. Biol. 30, 539–551.PubMedCrossRefGoogle Scholar
  36. 36.
    Fobert, P. R., Labbé, H., Cosmopoulos, J., et al. (1994) T-DNA tagging of a seed coat-specific cryptic promoter in tobacco. Plant J. 6, 567–577.PubMedCrossRefGoogle Scholar
  37. 37.
    Foster, E., Hattori, J., Labbé, H., et al. (1999) A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging. Plant Mol. Biol. 41, 45–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Plesch, G, Kamann, E., and Mueller-Roeber, B. (2000) Cloning of regulatory sequences mediating guard-cell-specific gene expression. Gene 249, 83–89.PubMedCrossRefGoogle Scholar
  39. 39.
    Mollier, P., Hoffmann, B., Orsel, M., and Pelletier, G (2000) Tagging of a cryptic promoter that confers root-specific gus expression in Arabidopsis thaliana. Plant Cell Reports 19, 1076–1083.CrossRefGoogle Scholar
  40. 40.
    The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.CrossRefGoogle Scholar
  41. 41.
    Ruiz-Medrano, R., Xoconostle-Cazares, B., and Lucas, W. J. (1999) Phloem longdistance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405–4419.PubMedGoogle Scholar
  42. 42.
    Koltai, H. and Bird, D. M. (2000) High throughput cellular localization of specific plant mRNAs by liquid-phase in situ reverse transcription-polymerase chain reaction of tissue sections. Plant Physiol. 123, 1203–1212.PubMedCrossRefGoogle Scholar
  43. 43.
    Hellens, R., Mullineaux, P., and Klee, H. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.PubMedCrossRefGoogle Scholar
  44. 44.
    Coupland, G., Plum, C., Chatterjee, S., Post, A., and Starlinger, P. (1989) Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 86, 9385–9388.PubMedCrossRefGoogle Scholar
  45. 45.
    Baker, B., Schell, J., Lörz, H., and Fedoroff, N. (1986) Transposition of the maize controlling element “Activator” in tobacco. Proc. Natl. Acad. Sci. USA 83, 4844–4848.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Marcela Rojas-Pierce
    • 1
  • Patricia S. Springer
    • 1
  1. 1.Department of Botany and Plant Sciences, Center for Plant Cell BiologyUniversity of CaliforniaRiverside

Personalised recommendations