Skip to main content

Plasmid-Based Reporter Genes

Assays for Green Fluorescent Protein

  • Protocol
  • 7064 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 235))

Abstract

Green fluorescent protein (GFP) of the jellyfish Aqueorea victoria is a 238-amino-acid, 28-kDa protein that absorbs light with an excitation maximum of 395 nm and fluoresces with an emission maximum of 509 nm (1). GFP owes its unique spectral properties to its chromophore (2) that consists of a Ser65, Tyr66, and Gly67 tripeptide (3). Autocatalytic cyclization of this tripeptide, induced by oxidation of Tyr66, is a necessary posttranslational step for proper fluorescence (strong reducing agents reversibly convert GFP into a nonfluorescent form) (4). This can occur in the absence of any cofactors, making GFP an extremely useful tool for a wide range of applications in a variety of heterologous systems (57). GFP activity can be assayed both qualitatively and quantitatively using a variety of techniques, including simple plate counting, fluorescence and confocal microscopy, flow cytometry, and fluorometry. Transcriptional and translational fusions of GFP to a gene or protein of interest can be used as gene expression reporters and subcellular localization tags. GFP is a small protein (28 kDa) compared to other reporters (e.g., β-galactosidase is 465 kDa) and GFP fusions often retain the native protein function (810). This makes GFP useful as a generic tag for studying protein synthesis, translocation, and other protein–protein interactions. GFP is also widely used as a reporter in many genetic techniques, including transposon mutagenesis, promoter/enhancer traps, and one-component hybrid systems. GFP can be visualized using microscopy in both live and fixed cells, making it an excellent tool for studying dynamic changes in living cells.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shimomura, O., Johnson, F. H., and Saiga, Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Comp. Physiol. 59, 223–227.

    Article  PubMed  CAS  Google Scholar 

  2. Ormö, M., Cubitt, A. B., Kallio, K., et al. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.

    Article  PubMed  Google Scholar 

  3. Cody, C. W., Prasher, D. C., Westler, W. M., et al. (1993) Chemical structure of the hexapeptide chromophore of Aequorea green-fluorescent protein. Biochemistry 32, 1212–1218.

    Article  PubMed  CAS  Google Scholar 

  4. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttrans-lational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.

    Article  PubMed  CAS  Google Scholar 

  5. Ausubel, F. M., Brent, R., Kingston, R. E., et al. (1994) Current Protocols in Molecular Biology, Wiley, New York.

    Google Scholar 

  6. Chalfie, M. and Kain, S. (eds.) (1998) Green Fluorescent Protein: Properties, Applications, and Protocols, Wiley–Liss, New York.

    Google Scholar 

  7. Margolin, W. (2000) Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods 20, 62–72.

    Article  PubMed  CAS  Google Scholar 

  8. Cormack, B. P. and Struhl, K. (1993) Regional codon randomization: defining a TATA-binding protein surface required for RNA polymerase III transcription. Science 262, 244–248.

    Article  PubMed  CAS  Google Scholar 

  9. Doyle, T. and Botstein, D. (1996) Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl. Acad. Sci. USA 93, 3886–3891.

    Article  PubMed  CAS  Google Scholar 

  10. Webb, C. D., Decatur, A., Teleman, A., et al. (1995) Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 177, 5906–5911.

    PubMed  CAS  Google Scholar 

  11. Cormack, B. P., Valvidia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.

    Article  PubMed  CAS  Google Scholar 

  12. Delagrave, S., Hawtin, R. E., Silva, C. M., et al. (1995) Red-shifted excitation mutants of the green fluorescent protein. BioTechnology 13, 151–154.

    Article  PubMed  CAS  Google Scholar 

  13. Heim, R., Cubitt, A. B., and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 663–664.

    Article  PubMed  CAS  Google Scholar 

  14. Heim, R. and Tsien, R. Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182.

    Article  PubMed  CAS  Google Scholar 

  15. Li, X., Zhao, X., Fang, Y., et al. (1998) Generation of destabilized enhanced green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34,970–34,975.

    Article  PubMed  CAS  Google Scholar 

  16. Haseloff, J. and Amos, B. (1995) GFP in plants. Trends Genet. 11, 328–329.

    Article  PubMed  CAS  Google Scholar 

  17. Hawley, T. S., Telford, W. G., Ramezani, A., et al. (2001) Four-color cytometric detection of retrovirally expressed red, yellow, green, and cyan fluorescent proteins. BioTechniques 30, 1028–1034.

    PubMed  CAS  Google Scholar 

  18. Chamberlain, C. and Hahn, K. M. (2000) Watching proteins in the wild: fluorescence methods to study protein dynamics in living cells. Traffic 1, 755–762.

    Article  PubMed  CAS  Google Scholar 

  19. Roessel, P. and Brand, A. H. (2002) Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nature Cell Biol. 4, E15–E20.

    Article  PubMed  Google Scholar 

  20. Reits, E. A. J. and Neefjes, J. J. (2001) From fixed to FRAP: Measuring protein mobility and activity in living cells. Nature Cell Biol. 3, E145–E147.

    Article  PubMed  CAS  Google Scholar 

  21. Yang, T. T., Kain, S. R., Kitts, P., et al. (1996) Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. Gene 173, 19–23.

    Article  PubMed  CAS  Google Scholar 

  22. Patterson, G. H., Knobel, S. M., Sharif, W. D., et al. (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790.

    Article  PubMed  CAS  Google Scholar 

  23. Cheng, L., Fu, J., Tsukamoto, A., et al. (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat. Biotechnol. 14, 606–609.

    Article  PubMed  CAS  Google Scholar 

  24. Green, G., Kain, S. R., and Angres, B. (2000) Dual color detection of cyan and yellow derivatives of green fluorescent protein using conventional fluorescence microscopy and 35-mm photography. Methods Enzymol. 327, 89–94.

    Article  PubMed  CAS  Google Scholar 

  25. Sullivan, K. F. and Kay, S. A. (1998) Methods in Cell Biology: Green Fluorescent Proteins, Academic, San Diego, CA.

    Google Scholar 

  26. Tombolini, R. and Jansson, J. K. (1998) Monitoring of GFP tagged bacterial cells. Methods Mol. Biol. 102, 285–298.

    PubMed  CAS  Google Scholar 

  27. Feilmeier, B. J., Isemiger, G., Schroeder, D., et al. (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J. Bacteriol. 182, 4068–4076.

    Article  PubMed  CAS  Google Scholar 

  28. Morin, J. G. and Hastings, J. W. (1971) Energy transfer in a bioluminescent system. J. Cell Physiol. 77, 313–317.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, S. and Hazelrigg, T. (1994) Implications for bed mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369, 400–403.

    Article  PubMed  CAS  Google Scholar 

  30. Ward, W. W., Cody, C. W., Hart, R. C., et al. (1980) Spectrophotometric identity of the energy-transfer chromophores on Renilla and Aequorea green-fluorescent proteins. Photochem. Photobiol. 31, 611–615.

    Article  CAS  Google Scholar 

  31. Chalfie, M., Tu, Y., Euskirchen, G., et al. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  32. Ropp, J. D., Donahue, C. J., Wolfgang-Kimball, D., et al. (1995) Aequorea green fluorescent protein analysis by flow cytometry. Cytometry 21, 309–317.

    Article  PubMed  CAS  Google Scholar 

  33. Valvidia, R. H., Hromockyj, A. E., Monack, D., et al. (1996) Applications for green fluorescent protein (GFP) in the study of host—pathogen interactions. Gene 173, 47–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Doulatov, S.R. (2003). Plasmid-Based Reporter Genes. In: Casali, N., Preston, A. (eds) E. coli Plasmid Vectors. Methods in Molecular Biology™, vol 235. Humana Press. https://doi.org/10.1385/1-59259-409-3:297

Download citation

  • DOI: https://doi.org/10.1385/1-59259-409-3:297

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-151-6

  • Online ISBN: 978-1-59259-409-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics