Skip to main content

In Vitro Transcription and Translation

  • Protocol
E. coli Plasmid Vectors

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 235))

  • 7533 Accesses

Abstract

In this chapter, we describe the use of plasmid vectors in transcription and translation systems in vitro to investigate aspects of the biology of the gene and the protein for which it codes. An in vitro, or cell-free, assay reproduces a relatively complex physiological process by mixing the essential purified components of the system under controlled conditions outside of the cell. Such systems allow the basic steps of transcription and translation to be studied individually, and the products obtained at each step to be altered in different ways according to the needs of the research. Thus, an in vitro system is convenient when it is necessary to modify a product, for example, by introducing mutations, labels, tags, or fusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Arnstein, H. R. V and Cox, R. A. (1992) Protein Biosynthesis: In Focus, Oxford University Press, Oxford.

    Google Scholar 

  2. Grunberg-Manago, M. (1999) Messenger RNA stability and its role in the control of gene expression in bacteria and phages. Annu. Rev. Genetics 33, 193–227.

    Article  CAS  Google Scholar 

  3. Weissmann, C., Billeter, N. A., Goodman, H. M., et al. (1973) Structure and function of phage RNA. Annu. Rev. Biochem. 42, 303–308.

    Article  PubMed  CAS  Google Scholar 

  4. Zengel, J. M. and Lindahl, L. (1992) Ribosomal protein L4 and transcription factor NusA have separable roles in mediating termination of transcription within the leader region of the S10 operon of E. coli. Genes Dev. 6, 655–662.

    Article  Google Scholar 

  5. Zengel, J. M., and Lindahl, L. (1993) Domain I of 23S rRNA competes with a paused transcription complex for ribosomal protein L4 of E. coli. Nucleic Acids Res. 21, 2429–2435.

    Article  PubMed  CAS  Google Scholar 

  6. Zengel, J. M., Mueckl, D., and Lindahl, L. (1980) Protein L4 of the E. coli ribosome regulates an eleven gene r-protein operon. Cell 21, 523–525.

    Article  PubMed  CAS  Google Scholar 

  7. Shine, J. and Dalgarno, L. (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71, 1342–1346.

    Article  PubMed  CAS  Google Scholar 

  8. Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C., et al. (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244, 182–188.

    Article  PubMed  CAS  Google Scholar 

  9. Zubay, G. (1980) The isolation and properties of CAP, the catabolite gene activator. Methods Enzymol. 65, 856–877.

    Article  PubMed  CAS  Google Scholar 

  10. Lesley, S. A., Brow, M. A. D., and Burgess, R. R. (1991) Use of in vitro protein synthesis from polymerase chain reaction generated templates to study interaction of Escherichia coli transcription factors with core RNA polymerase and for epitope mapping of monoclonal anitbodies. J. Biol. Chem. 266, 2632–2638.

    PubMed  CAS  Google Scholar 

  11. Jackson, R. I. and Hunt, T. (1983) Preparation and use of nuclease-treated lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 96, 50–74.

    Article  PubMed  CAS  Google Scholar 

  12. Darnbrough, C., Legon, S., Hunt, T., et al. (1973) Initiation of protein synthesis: evidence for messenger RNA-independent binding of methionyl-transfer RNA to the 40 S ribosomal subunit. J. Mol. Biol. 76, 379–403.

    Article  PubMed  CAS  Google Scholar 

  13. Pelham, H. R. and Jackson, R. J. (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67, 247–256.

    Article  PubMed  CAS  Google Scholar 

  14. Walter, P. and Blobel, G. (1983) Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 96, 84–93.

    Article  PubMed  CAS  Google Scholar 

  15. Erickson, A. H. and Blobel, G. (1983) Cell-free translation of messenger RNA in a wheat germ system. Methods Enzymol. 96, 38–50.

    Article  PubMed  CAS  Google Scholar 

  16. Spirin, A. S., Boranov, V. I., Ryabova, L. A., et al. (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 1162–1164.

    Article  PubMed  CAS  Google Scholar 

  17. Boranov, V. I. and Spirin, A. S. (1993) Gene expression in cell-free system on preparative scale. Methods Enzymol. 217, 123–142.

    Article  Google Scholar 

  18. Schenborn, E. T. and Nierendorf R. C. (1985) A novel transcription property of SP6 and T7 RNA polymerases: Dependence on template structure. Nucleic Acids. Res. 13, 6223–6236.

    Article  PubMed  CAS  Google Scholar 

  19. Movahedzadeh, H., Gonzalez-y-Merchand, J. A., and Cox, R. A. (2001) Transcription start site mapping, in Mycobacterium tuberculosis Protocols: Methods in Molecular Medicine, (Parish, T. and Stoker, N. G., eds.), Humana, Totowa, NJ, vol. 54, pp. 105–124.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Movahedzadeh, F., Rico, S.G., Cox, R.A. (2003). In Vitro Transcription and Translation. In: Casali, N., Preston, A. (eds) E. coli Plasmid Vectors. Methods in Molecular Biology™, vol 235. Humana Press. https://doi.org/10.1385/1-59259-409-3:247

Download citation

  • DOI: https://doi.org/10.1385/1-59259-409-3:247

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-151-6

  • Online ISBN: 978-1-59259-409-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics