Skip to main content

Site-Directed Mutagenesis by Inverse PCR

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 235))

Abstract

Site-directed mutagenesis has revolutionized the study of protein structure and function by enabling the controlled and systematic production of mutant proteins. Early methods of site-directed mutagenesis involved the use of a mutated oligonucleotide primer to prime synthesis of a target single-stranded DNA template. These approaches were very inefficient, yielding success rates of 1–5% (1). A dramatic improvement in the efficiency of generating mutations resulted from the use of single-stranded, uracil-containing DNA molecules isolated from ung dut Escherichia coli strains (see Chapter 3). Again, the mutation is introduced in a mutated oligonucleotide primer. Selection against the wild-type sequence parent DNA occurs on transformation into wild-type E. coli. Mutagenesis by this method was relatively efficient, with rates of 15–35%, but required a number of subcloning steps involving single-stranded M13 phage clones (2). It was only following the development of the polymerase chain reaction (PCR) that the two concepts were combined, dramatically improving the efficiency of the whole procedure.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smith M. (1985) In vitro mutagenesis. Annu Rev Genet. 19, 423–462.

    Article  PubMed  CAS  Google Scholar 

  2. Kunkel, T. A., Benebek, K., and McClary, J. (1991) Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 204, 125–139.

    Article  PubMed  CAS  Google Scholar 

  3. Hemsley, A., Arnhem, N., Toney, M. D., et al. (1989) A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 17, 6545–6551.

    Article  PubMed  CAS  Google Scholar 

  4. Stemmer, W. P. C. and Morris, S. K. (1992) Enzymatic inverse PCR: a restriction site independent, single fragment method for high efficiency site directed mutagenesis. BioTechniques 13, 214–220.

    PubMed  CAS  Google Scholar 

  5. Hughes, M. J. G. and Andrews, D. W. (1996) Creation of deletion, insertion and substitution mutations using a single pair of primers and PCR. BioTechniques 20, 188–196.

    PubMed  CAS  Google Scholar 

  6. Quikchange Site-Directed Mutagenesis Kit. Instruction Manual. (1998) Stratagene, La Jolla, CA.

    Google Scholar 

  7. Kunkel, T. A. and Loeb, L. A. (1979) On the fidelity of DNA replication. Effect of divalent metal ion activators and deoxyribonucleoside triphosphate pools on in vitro mutagenesis. J. Biol. Chem. 254, 5718–5725.

    PubMed  CAS  Google Scholar 

  8. Turchin, A. and Lawlor, J.F. (1999) The Primer Generator: a program that facilitates the selection of oligonucleotides for site-directed mutagenesis. BioTechniques 26, 660–668.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Dominy, C.N., Andrews, D.W. (2003). Site-Directed Mutagenesis by Inverse PCR. In: Casali, N., Preston, A. (eds) E. coli Plasmid Vectors. Methods in Molecular Biology™, vol 235. Humana Press. https://doi.org/10.1385/1-59259-409-3:209

Download citation

  • DOI: https://doi.org/10.1385/1-59259-409-3:209

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-151-6

  • Online ISBN: 978-1-59259-409-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics