Skip to main content

The Role of Pharmacometrics in Cardiovascular Drug Development

  • Protocol
Cardiac Drug Development Guide

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Minto and Schnider (1) have pointed out that “Rapidly evolving changes in health care economics and consumer expectation make it unlikely that traditional drug development approaches will succeed in the future. A shift away from the narrow focus on rejecting the null hypothesis toward a broader focus on seeking to understand the factors that influence the dose—response relationship together with the development of the next generation of software based on population models (see Section 2.5. for the definition of population models) should permit a more efficient and rational drug development programme.” Their comments are further supported by the fact that the direct cost of drug development has continued to escalate at two and one half times the rate of inflation. The cost of introducing a drug to the market was $802 million in 2000 compared with $237 million in 1987 (2). As an indirect cost, it takes 7–12 yr for a drug to move through development to the final Food and Drug Administration approval (2). Several factors have influenced the escalation in the cost of drug development, including more rigorous approval standards. Regulatory standards are not likely to become less rigorous; therefore, one must look elsewhere to improve the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minto, C. and Schinder, T. (1998) Expanding clinical applications of population pharmacodynamic modeling. Br. J. Clin. Pharmacol. 46, 321–333.

    Article  PubMed  CAS  Google Scholar 

  2. Tufts Center for the Study of Drug Development (2001) Press Release, November 30.

    Google Scholar 

  3. Peck, C. C. (1997) Drug development: Improving the process. Food Drug Law J. 52, 163–167.

    PubMed  CAS  Google Scholar 

  4. Holford, N. H. and Sheiner, L. B. (1981) Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin. Pharmacokinet. 6, 429–453.

    Article  PubMed  CAS  Google Scholar 

  5. Dyneka, N. L., Garg, V., and Jusko, W. J. (1993) Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokinet. Biopharm. 21, 457–478.

    Article  Google Scholar 

  6. Jusko, W. J. and Ko, H. C. (1994) Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56, 406–419.

    Article  PubMed  CAS  Google Scholar 

  7. Sheiner, L. B., Stanski, D. R., Vozeh, S., Miller, R. D., and Ham, J. (1979) Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine. Clin. Pharmacol. Ther. 25, 358–371.

    PubMed  CAS  Google Scholar 

  8. Williams, P. J., Lane, J. R., Turkel, C., Capparelli, E. V., Dzewanowska, Z., and Fox, A. (2001) Dichloroacetate: Population pharmacokinetics with a pharmacodynamic sequential link model. J. Clin. Pharmacol. 41, 259–267.

    Article  PubMed  CAS  Google Scholar 

  9. Porchet, H. C., Benowitz, N. L., and Sheiner, L. B. (1988) Pharmacodynamic model of tolerance: Application to nicotine. J. Pharmacol. Exp. Ther. 244, 231–236.

    PubMed  CAS  Google Scholar 

  10. Derendorf, H., Mollman, H., Hochhaus, G., Meibohm, B., and Barth, J. (1997) Clinical PK/PD modeling as a tool in drug development of cortecosteroids. Int. J. Clin. Pharmacol. Ther. 35, 481–488.

    PubMed  CAS  Google Scholar 

  11. Holford, N. H. G. and Peace, K. E. (1992) Results and validation of a population pharmacodynamic model for cognitive effects in Alzheimer patients with tacrine. Proc. Natl. Acad. Sci. USA 89, 11,471–11,475.

    Article  PubMed  CAS  Google Scholar 

  12. Sheiner, L. B., Rosenberg, B., and Marathe, V. (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J. Pharmacokinet. Biopharm. 5, 445–479.

    Article  PubMed  CAS  Google Scholar 

  13. Mandema, J. W., Verotta, D., and Sheiner, L. B. (1992) Building population pharmacokinetic pharmacodynamic models. J. Pharmacokinet. Biopharm. 20, 511–528.

    Article  PubMed  CAS  Google Scholar 

  14. Department of Health and Human Services (1999) Guidance for Industry: Population Phar-macokinetics. US Food and Drug Administration, Rockville, MD.

    Google Scholar 

  15. Sheiner, L. B. and Beal, S. L. (1980) Evaluation of methods for estimating population pharmacokinetic parameters. J. Clin. Pharmacokinet. 9, 635–651.

    Google Scholar 

  16. Steimer, J. L., Mallet, A., and Golmard, J. L. (1984) Alternative approaches to the estimation of population pharmacokinetic parameters: Comparison with the nonlinear mixed effects model. Drug Metab. Rev. 15, 265–292.

    Article  PubMed  CAS  Google Scholar 

  17. Egan, T. D., Lemmens, H. J., Fiset, P., Hermann, D. J., Muir, K. T., Stanski, D. R., et al. (1993) The Pharmacokinetics of a new short-acting opioid remifentanil (G187084B) in healthy adult male volunteers. Anesthesiology 79, 881–892.

    Article  PubMed  CAS  Google Scholar 

  18. Kataria, B. K., Ved, S. A., Nicodemus, H. F., Hoy, G. R., Lea, D., Dubois, M. Y., et al. (1994) The Pharmacokinetics of propofol in children using three different analysis approaches. Anesthesiology 80, 104–122.

    Article  PubMed  CAS  Google Scholar 

  19. Sheiner, L. B., Beal, S. L., and Sambol, N. C. (1989) Study designs for dose-ranging. Clin. Pharmacol. Ther. 46, 63–77.

    Article  PubMed  CAS  Google Scholar 

  20. Sheiner, L. B., Hashimoto, Y., and Beal, S. L. (1991) A simulation study comparing designs for dose ranging. Stats Med. 10, 303–321.

    Article  CAS  Google Scholar 

  21. Ette, E. I., Williams, P. J., Fadiran, E., Ajayi, F. O., and Onyiah, L. C. (2001) The process of knowledge discovery from large pharmacokinetic data sets. J. Clin. Pharmacol. 41, 25–34.

    Article  PubMed  CAS  Google Scholar 

  22. Ette, E. I. and Ludden, T. M. (1995) Population pharmacokinetic modeling: The importance of informative graphics. Pharmaceut. Res. 12, 1845–1855.

    Article  CAS  Google Scholar 

  23. Ette, E. I. (1998) Statistical graphics in pharmacokinetics and pharmacodynamics: A tutorial. Ann. Pharmacother. 32, 818–828.

    Article  PubMed  CAS  Google Scholar 

  24. Rombout, F. (1997) Good pharmacokinetic practice (GPP) and logistics: a continuing challenge, in The Population Approach: Measuring and Managing Variability in Response, Concentration and Dose (Aarons, L., Balant, L. P., Gundert-Remy, U. A., et al., eds.) Office for Official Publications of the European Communities, Luxemborg, pp. 183–193.

    Google Scholar 

  25. Grasela, T. H., Antal, E. J., Fiedler-Kelley, J., et al. (1999) An automated drug concentration screening and quality assurance program for clinical trials. Drug Info. J. 33, 273–279.

    Google Scholar 

  26. Holford, N. H., Kimko, H. C., Monteleone, J. P., and Peck, C. C. (2000) Simulation of Clinical Trials. Annu. Rev. Pharmacol. Toxicol. 40, 209–234.

    Article  PubMed  CAS  Google Scholar 

  27. Reigner, B. G., Williams, P. E. O., Patel, I. H., et al. (1997) An evaluation of the integration of pharmacokinetic and pharmacodynamic principles in clinical drug development. Experience with Hoffmann La Roche. Clin. Pharmacokinet. 33, 142–152.

    Article  PubMed  CAS  Google Scholar 

  28. Sheiner, L. B. (1997) Learning versus confirming in clinical drug development. Clin. Pharmacol. Ther. 61, 275–291.

    Article  PubMed  CAS  Google Scholar 

  29. Csajka, C., Buclin, T., Fattinger, K., Brunner, H. R., and Biollaz, J. (2002) Population pharmacokinetic-pharmacodynamic modeling of angiotensin receptor blockade in healthy volunteers. Clin. Pharmacokinet. 41, 137–152.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Williams, P.J., Desai, A., Ette, E. (2003). The Role of Pharmacometrics in Cardiovascular Drug Development. In: Pugsley, M.K. (eds) Cardiac Drug Development Guide. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-404-2:365

Download citation

  • DOI: https://doi.org/10.1385/1-59259-404-2:365

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-097-7

  • Online ISBN: 978-1-59259-404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics