Skip to main content

Cardiac Drug Development

From Animal Models to Clinical Trials

  • Protocol
Book cover Cardiac Drug Development Guide

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 593 Accesses

Abstract

Statistics from the American Heart Association show that the total number of arrhythmia-related mortalities is approx 500,000 of an estimated 2,000,000 US deaths per year, or nearly one-quarter of all cardiovascular-related deaths (1). The majority of such deaths, which have remained at a nearly constant ratio since the 1970s when cardiac drug development programs were formally being established within the pharmaceutical industry, are caused by ventricular fibrillation (VF; Fig. 1).

The ischemic heart produces a broad spectrum of arrhythmias that precipitate sudden cardiac death. Antiarrhythmic drug therapy (ion channel-blocking drugs) can suppress fatal arrhythmias and produce a normal EKG rhythm. Unfortunately, although these drugs are beneficial, many possess side effects, including myocardial depression and proarrhythmic tendencies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. American Heart Association. (2002) Heart and Stroke Statistical Update. American Heart Association, Dallas, TX.

    Google Scholar 

  2. Vaughan Williams, E. M. (1984). A classification of antiarrhythmic actions reassessed after a decade of new drugs. J. Clin. Pharmacol. 24, 129–147.

    Google Scholar 

  3. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. (1989) Preliminary Report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N. Eng. J. Med. 321, 406–412.

    Article  Google Scholar 

  4. The Cardiac Arrhythmia Suppression Trial II (CAST—II) Investigators. (1992) Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N. Eng. J. Med. 327, 227–233.

    Google Scholar 

  5. IMPACT Research Group. (1984) International mexiletine and placebo antiarrhythmic coronary trial: I. Report on arrhythmia and other findings. J. Am. Coll. Cardiol. 4, 1148–1163.

    Article  Google Scholar 

  6. Myerburg, R. J., Kessler, K. M., Chakko, S., Cox, M. M., Fernando, P., Interian, A., and Castellanos, A. (1994) Future evaluation of antiarrhythmic therapy. Am. Heart J. 127, 1111–1118.

    Article  PubMed  CAS  Google Scholar 

  7. Morganroth, J. and Goin, J. E. (1991) Quinidine-related mortality in the short-to medium-term treatment of ventricular arrhythmias: A meta analysis. Circulation 84, 1977–1983.

    PubMed  CAS  Google Scholar 

  8. Hine, L. K., Laird, N., Hewitt, P., and Chalmers, T. C. (1989) Meta-analytic evidence against prophylactic use of lidocaine in acute myocardial infarction. Arch. Int. Med. 149, 2694–2698.

    Article  CAS  Google Scholar 

  9. Rosenfeld, J., Rosen, M. R., and Hoffman, B. F. (1978) Pharmacologic and behavioral effects on arrhythmias that immediately follow abrupt coronary occlusion: A canine model of sudden coronary death. Am. J. Cardiol. 41, 1075–1084.

    Article  PubMed  CAS  Google Scholar 

  10. Kam, R. M., Teo, W. S., Koh, T. H., and Lim, Y. L. (1999) Treatment and prevention of sudden cardiac death∖what have we learnt from randomised clinical trials? Singapore Med. J. 40, 707–710.

    PubMed  CAS  Google Scholar 

  11. Ogunyankin, K. O. and Singh, B. N. (1999) Mortality reduction by antiadrenergic modulation of arrhythmogenic substrate: Significance of combining beta blockers and amiodarone. Am. J. Cardiol. 84, 76R–82R.

    Article  PubMed  CAS  Google Scholar 

  12. Singh, B. N. (1999) The relevance of sympathetic activity in the pharmacological treatment of chronic stable angina. Can. J. Cardiol. 15(Suppl A), 15A–21A.

    PubMed  Google Scholar 

  13. Nattel, S. (1991) Antiarrhythmic drug classifications. A critical appraisal of their history, present status, and clinical relevance. Drugs 41, 672–701.

    Article  PubMed  CAS  Google Scholar 

  14. Beatch, G. N., Barrett, T. D., Plouvier, B., Jung, G., Wall, R. A., Zolotoy, A., and Walker, M. J. A. (2002) Ventricular fibrillation, an uncontrolled arrhythmia seeking new targets. Drug Dev. Res. 55, 45–52.

    Article  CAS  Google Scholar 

  15. Karmazyn, M. (2000) Pharmacology and clinical assessment of cariporide for the treatment of coronary artery diseases. Expert. Opin. Invest. Drugs 9, 1099–1108.

    Article  CAS  Google Scholar 

  16. Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond) 116, 500–544.

    Google Scholar 

  17. Denac, H., Mevissen, M., and Scholtysik, G. (2000) Structure, function and pharmacology of voltage-gated sodium channels. Naunyn-Schmied. Arch. Pharmacol. 362, 453–479.

    Article  CAS  Google Scholar 

  18. Sato, C., Ueno, Y., Asai, K., Takahashi, K., Sato, M., Engel, A., and Fujiyoshi, Y. (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409, 1047–1051.

    Article  PubMed  CAS  Google Scholar 

  19. Isom, L. L., DeJongh, K. S., Patton, D. E., Reber, B. F. X., Offord, J., Charbonneau, H., et al. (1992) Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science 256, 839–842.

    Article  PubMed  CAS  Google Scholar 

  20. Isom, L. L., Ragsdale, D. S., De Jongh, K. S., Westenbroek, R. E., Reber, B. F. X., Scheuer, T., et al. (1995) Structure and function of the β2 subunit of brain sodium channels, a trans-membrane glycoprotein with a CAM motif. Cell 83, 433–442.

    Article  PubMed  CAS  Google Scholar 

  21. West, J. W., Patton, D. E., Scheuer, T., Wang, Y., Goldin, A. L., and Catterall, W. A. (1992) A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation. Proc. Natl. Acad. Sci. USA 89, 10910–10914.

    Article  PubMed  CAS  Google Scholar 

  22. Hille, B. (1984) Mechanisms of Block, in Ionic Channels of Excitable Membranes (Hille, B., ed.), Sinauer, Sunderland, UK, pp. 390–422.

    Google Scholar 

  23. Hille, B. (1977) Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 69, 497–515.

    Article  PubMed  CAS  Google Scholar 

  24. Hondeghem, L. M. and Katzung, B. G. (1977) Time-and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim. Biophys. Acta. 472, 373–398.

    PubMed  CAS  Google Scholar 

  25. Ragsdale, D. S., McPhee, J. C., Scheuer, T., and Catterall, W. A. (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc. Natl. Acad. Sci. USA 93, 9270–9275.

    Article  PubMed  CAS  Google Scholar 

  26. Streissnig, J. (1999) Pharmacology, structure and function of cardiac L-type calcium channels. Cell. Physiol. Biochem. 9, 242–269.

    Article  Google Scholar 

  27. Bean, B. P. and McDonough, S. I. (1998) Two for T. Neuron 20, 825–828.

    CAS  Google Scholar 

  28. Gao, T., Puri, T. S., Gerhardstein, B. L., Chien, A. J., Green, R. D., and Hosey, M. M. (1997) Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J. Biol. Chem. 272, 19,401–19,407.

    Article  PubMed  CAS  Google Scholar 

  29. Klugbauer, N., Lacinova, L., Marais, E., Hobom, M., and Hofmann, F. (1999) Molecular diversity of the calcium channel alpha2delta subunit. J. Neurosci. 19, 684–691.

    PubMed  CAS  Google Scholar 

  30. Snyders, D. J. (1999) Structure and function of cardiac potassium channels. Cardiovasc. Res. 42, 377–390.

    Article  PubMed  CAS  Google Scholar 

  31. Nerbonne, J. M. (2000) Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J. Physiol. 525, 285–298.

    Article  PubMed  CAS  Google Scholar 

  32. Rasmusson, R. L., Morales, M. J., Wang, S., Liu, S., Campbell, D. L., Brahmajothi, M. V., and Strauss, H. C. (1998) Inactivation of voltage-gated cardiac K+ channels. Circ. Res. 82, 739–750.

    PubMed  CAS  Google Scholar 

  33. Colatsky, T. J. and Follmer, C. H. (1989) K+ channel blockers and activatorrs in cardiac arrhythmias. Cardiovasc. Drug Rev. 7, 199–209.

    Article  Google Scholar 

  34. Hondeghem, L. M. and Snyders, D. J. (1990) Class III antiarrhythmic agents have a lot of potential but a long way to go. Circulation 81, 686–690.

    PubMed  CAS  Google Scholar 

  35. Katritsis, D., and Camm, A. J. (1993) New class III antiarrhythmic drugs. Eur. Heart J. 14, 93–99.

    PubMed  CAS  Google Scholar 

  36. Janse, M. J. and Kleber, A. G. (1981) Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ. Res. 49, 1069–1081.

    PubMed  CAS  Google Scholar 

  37. Patterson, E., Szabo, B., Scherlag, B. J., and Lazzara, R. (1995) Arrhythmogenic effects of antiarrhythmic drugs, in Cardiac Electrophysiology, From Cell to Bedside (Zipes, D. P., Jalife, J. eds.), W. B. Saunders, New York, NY, pp. 496–511.

    Google Scholar 

  38. Towbin, J. A., Wang, Z., and Li, H. (2001) Genotype and severity of long QT syndrome. Drug Metab Dispos. 29, 574–579.

    PubMed  CAS  Google Scholar 

  39. Albrecht, B., Weber, K., and Pongs, O. (1995) Characterization of a voltage-activated K-channel gene cluster on human chromosome 12p13. Receptors Channels 3, 213–220.

    PubMed  CAS  Google Scholar 

  40. Martens, J. R., Kwak, Y. G., and Tamkun, M. M. (1999) Modulation of Kv channel alpha/beta subunit interactions. Trends Cardiovasc. Med. 9, 253–258.

    Article  PubMed  CAS  Google Scholar 

  41. Roden, D. M. and Balser, J. R. (1999) A plethora of mechanisms in the HERG-related long QT syndrome. Genetics meets electrophysiology. Cardiovasc. Res. 44, 242–246.

    Article  PubMed  CAS  Google Scholar 

  42. Mounsey, J. P., and DiMarco, J. P. (2000) Cardiovascular drugs. Dofetilide. Circulation 102, 2665–2670.

    PubMed  CAS  Google Scholar 

  43. ICH S7B (2002) Safety pharmacology studies for assessing the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals: Draft ICH Consensus Guidelines.

    Google Scholar 

  44. Pugsley, M. K. and Tabrizchi, R. (2000) The vascular system: An overview of structure and function. J. Pharmacol. Toxicol. Meth. 44, 333–340.

    Article  CAS  Google Scholar 

  45. Pugsley, M. K. and Walker, M. J.A. (1992) Methods for evaluating heart function, in Immunopharmacology of the Heart (Curtis, M. J., ed.), Academic Press, London, UK, pp. 7–28.

    Google Scholar 

  46. Pang, C. C. Y. (2000) Measurement of body venous tone. J. Pharmacol. Toxicol. Meth. 44, 341–360.

    Article  CAS  Google Scholar 

  47. Winslow, E. (1984) Methods in the detection and assessment of antiarrhythmic activity. Pharmacol. Ther. 24, 401–433.

    Article  PubMed  CAS  Google Scholar 

  48. Beatch, G. N. and Barrett, T. D. (1998) Monophasic action potential recording, in Methods in Cardiac Electrophysiology (Walker, M. J. A., and Pugsley, M. K., eds.), CRC Press, Boca Raton, FL, pp. 117–132.

    Google Scholar 

  49. Cheung, P. H., Pugsley, M. K., and Walker, M. J.A. (1993) Arrhythmia models in the rat. J. Pharmacol. Toxicol. Meth. 29, 179–184.

    Article  CAS  Google Scholar 

  50. Botting, J. H., Curtis, M. J., and Walker, M. J.A. (1985) Arrhythmias associated with myocardial ischaemia and infarction. Mol. Aspects Med. 8, 311–422.

    Article  Google Scholar 

  51. Johnston, K. M., Macleod, B. A., and Walker, M. J. A. (1983) Responses to ligation of a coronary artery in conscious rats and the actions of antiarrhythmics. Can. J. Physiol. Pharmacol. 61, 1340–1353.

    PubMed  CAS  Google Scholar 

  52. Saint, D. A. (1998) Single channel recording and mathematical analysis of currents in cardiac myocytes, in Methods in Cardiac Electrophysiology (Walker, M. J. A., and Pugsley, M. K., eds.), CRC Press, Boca Raton, FL, pp. 63–88.

    Google Scholar 

  53. Walker, M. J. A. and Pugsley, M. K. (eds.) (1998) Methods in Cardiac Electrophysiology, CRC Press, Boca Raton, FL.

    Google Scholar 

  54. Doring, H. J., and Dehnert, H. (eds.) (1988) Methods in Experimental Physiology and Pharmacology: Biological Measurement Techniques V, Biomesstechnik-Verlag, Germany.

    Google Scholar 

  55. Denyer, J., Worley, J., Cox, B., Allenby, G., and Banks, M. (1998) HTS approaches to voltage-gated ion channel drug discovery. Drug Dis. Today 3, 323–332.

    Article  CAS  Google Scholar 

  56. Stanton L. W., Garrard, L. J., Damm, D., Garrick, B. L., Lam, A., Kapoun, A. M., et al. (2000) Altered patterns of gene expression in response to myocardial infarction. Circ. Res. 86, 939–945.

    PubMed  CAS  Google Scholar 

  57. Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. (1999) Expression profiling using cDNA microarrays. Nat. Genet. 21(1 Suppl), 10–14.

    Article  PubMed  CAS  Google Scholar 

  58. Remme, C. A., Lombardi, M. P., van den Hoff, M. J. B., and Lekanne dit Deprez, R. H. (2000) CDNA arrays: The ups and downs. Cardiovasc. Drugs Ther. 15, 99–101.

    Google Scholar 

  59. Boguslavsky, J. (2000) In—house microarrays put researchers in control. Drug Dis. Dev. 10, 30–36.

    Google Scholar 

  60. Lipicky, R. (2000) An FDA perspective on antiarrhythmic drugs in phase II trials. Am. Heart J. 139, S197–S199.

    Article  PubMed  CAS  Google Scholar 

  61. Temple, R. (1999) Are surrogate markers adequate to assess cardiovascular disease drugs? JAMA 282, 790–795.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pugsley, M.K. (2003). Cardiac Drug Development. In: Pugsley, M.K. (eds) Cardiac Drug Development Guide. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-404-2:3

Download citation

  • DOI: https://doi.org/10.1385/1-59259-404-2:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-097-7

  • Online ISBN: 978-1-59259-404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics