Delayed Protection of the Myocardium

A Novel Therapeutic Window for Cardiac Drug Development
  • László Szekeres
  • James Parratt
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

It is known that the administration of drugs can relieve or prevent many of the consequences of myocardial ischemia; this is the basis for the current therapy of angina of effort by, for example, organic nitrites and nitrates and β adrenoceptor-blocking drugs. These are effective in the short term; protection is lost soon after the cessation of the treatment. More recently the emphasis, in experimental situations, of alleviating the consequences of ischaemia in a variety of organs has shifted to the prolonged and delayed protection by adaptation induced by a variety of stimuli, many of which involve some form of cellular stress. It is well known that adaptation to changing conditions is a basic function of living organisms that enables the individual and the species to survive. This phenomenon is effective in different organs and organ systems, and a variety of mechanisms are able to induce it. Delayed cardioprotection induced by adaptation appears to be a universal response. Although some metabolic changes underlie all types of adaptive mechanisms, the metabolic adaptation of an organ to stressful situations is characterized by the predominance of metabolic changes even in the absence of other adaptive alterations.

Keywords

Ischemia Adenosine Immobilization Dexamethasone Noradrenaline 

References

  1. 1.
    Rona, G. and Dusek, J. (1972) Studies on the mechanism of increased myocardial resistance, in Recent Advances in Studies on Cardiac Structure and Metabolism Vol. 1, Myocardiology (Bajusz, E. E. and Rona G., eds.), University Park Press, Baltimore, MD, pp. 422–429.Google Scholar
  2. 2.
    Dusek, J., Rona, G., and Kahn D. S. (1970) Myocardial resistance: A study of its development against toxic doses of isoproterenol. Arch. Pathol. 89, 79–83.PubMedGoogle Scholar
  3. 3.
    Balazs, T. (1972) Cardiotoxicity of isoproterenol in experimental animals. Influence of stress, obesity, and repeated dosing, in Myocardiology—Recent Advances in Studies on Cardiac Structure and Metabolism (Bajusz, E. E. and Rona G., eds.), University Park Press, Baltimore, MD, pp. 770–778.Google Scholar
  4. 4.
    Selye, H., Veilleux, R., and Grasso, S. (1960) Protection by coronary ligature against isoproterenol-induced myocardial necroses. Proc. Soc. Exp. Biol. Med. 104, 343–345.PubMedGoogle Scholar
  5. 5.
    Joseph, X., Bloom, S., Pledger, G., and Balázs, T. (1983) Determinants of resistance to the cardiotoxicity of isoproterenol in rats. Toxicol. Appl. Pharmacol. 69, 199–205.PubMedCrossRefGoogle Scholar
  6. 6.
    Poupa, O., Turek, Z., Pelouch, V., Prochazka, J., and Krofta, K. (1965) Increased resistance of the myocardium to anoxia in vitro after repeated application to isoprenalÍne. Physiol. Bohemoslov. 14, 536–541.PubMedGoogle Scholar
  7. 7.
    Szekeres, L., Koltai, M., Pataricza, J., Takáts, I., and Udvary É. (1984) On the late antiischemic action of the stable PgI2 analogue: 7-oxo-PgI2-Na and its possible mode of action. Biomed. Biochim. Acta 43, 135–142.Google Scholar
  8. 8.
    Szekeres, L., Krassói, I., Pataricza, J., and Udvary, É. (1985) Delayed antiischemic effect of prostaglandin I2 and of a new stable prostaglandin I2 analogue, 7-oxo-prostacyclin-Na, in experimental model angina in dogs, in Advances in Myocardiology, Vol. 6. (Dhalla, N. S. and Hearse, D. J., eds.) Plenum Press, New York, pp. 607–618.Google Scholar
  9. 9.
    Szekeres, L., Papp, J. Gy. Szilvássy, Z., Udvary, É., and Végh, Á. (1993) Moderate stress by cardiac pacing may induce both short term and long term cardioprotection. Cardiovasc. Res. 27, 593–596.PubMedCrossRefGoogle Scholar
  10. 10.
    Kuzuya, T., Hoshida, S., Yamashita, N., Fuji, H., Oe, H., Hori, M., et al. (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ. Res. 72, 1293–1299.PubMedGoogle Scholar
  11. 11.
    Marber, M. S., Latchman, D. S., Walker, J. M., and Yellon, D. M. (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88, 1264–1272.PubMedGoogle Scholar
  12. 12.
    Szekeres, L. (1996) On the mechanism and possible therapeutic application of delayed cardiac adaptation to stress. Can. J. Cardiol. 12, 177–185.PubMedGoogle Scholar
  13. 13.
    Yellon, D. (1994) Delayed myocardial preconditioning: The role of stress proteins, in Cardiac Preconditioning, William Harvey Research Conferences (Parratt, J. and Thiemermann, C., eds.) William Harvey Research Institute, London, p. 12.Google Scholar
  14. 14.
    Wu, S., Furman, B. L., and Parratt, J. R. (1994) Attenuation by dexamethasone of endotoxin protection against ischaemia-induced ventricular arrhythmias. Br. J. Pharmacol. 113, 1083–1084.Google Scholar
  15. 15.
    Beckman, C. B., Niazi, Z., Dietzman, R. H., and Lillehi, R. C. (1981) Protective effects of epinephrine tolerance in experimental cardiogenic shock. Circ. Shock 8, 137–149.PubMedGoogle Scholar
  16. 16.
    Meng, X., Brown, J. M., Ao, L., Mitchell, M. B., Banerjee, A., and Harken, A. H. (1993) Norepinephrine induces late cardiac protection preceded by oncogene and heat shock protein gene overexpression. [abstr 3407] Circulation 88(Suppl), I633.Google Scholar
  17. 17.
    Ravingerova, T., Song, W., Pancza, D., Dzurba, A., Ziegelhoeffer, A., and Parratt, J. R. (1997) Pretreatment with catecholamines can suppress severe ventricular arrhythmias in rats: Relevance to ischemic preconditioning. Exp. Clin. Cardiol. 2, 19–24.Google Scholar
  18. 18.
    Kovanecz, I., Papp, J. G., and Szekeres L. (1996) Long-term ischemic preconditioning of the heart induced by repeated beta-adrenergic stress. Acta Phys. Hung. 84, 297–298.Google Scholar
  19. 19.
    Szekeres, L., Nemeth, M., Szilvassy, Z., Tosaki, A., Udvary, E., and Vegh, A. (1988) On the nature and molecular basis of prostacyclin induced late cardiac changes. Biomed. Biochim. Acta 47, 6–11.Google Scholar
  20. 20.
    Szekeres, L., Bálint, Zs., Karcsê, S., and Tósaki, Á. (1990) Delayed protection by 7-oxo-PgI2 against cardiac transmembrane ion shifts and early morphological changes due to ischemia and reperfusion. Cardioscience 1, 280–286.Google Scholar
  21. 21.
    Ravingerova, T., Tribulova, N., Ziegelhöffer, A., Dzurba, A., and Szekeres, L. (1991) 7-oxo-PgI2 prevents partially the postischemic reperfusion injury of the rat heart. J. Mol. Cell. Cardiol. 23(Suppl.V), 104.Google Scholar
  22. 22.
    Udvary, É., and Szekeres, L. (1986) Prostacyclin: antiischemic or cardioprotective?, in Advances in Pharmacological Research and Practice, Vol. 3., Section 7. Prostanoids (Kecskeméti, V., Gyires, K., and Kovács, G., eds.). Akadémiai Kiadó, Budapest, pp. 333–338.Google Scholar
  23. 23.
    Szekeres, L., Németh, M., Papp, J. Gy., Udvary, É., Végh, Á., and Virág L. (1998) Neue Entwicklungen der antiarrhythmischen Therapie, in Perspektiven der Arrhythmiebehandlung (Lüderitz, B. and Antoni, B., eds.), Springer, Berlin, pp. 24–34.Google Scholar
  24. 24.
    Ravingerová, T., Tribulová, N., Ziegelhöffer, A., Styk, J., and Szekeres, L. (1993) Suppression of reperfusion induced arrhythmias in the isolated rat heart: Pretreatment with 7-oxo prostacyclin in vivo. Cardiovasc. Res. 27, 1051–1055.PubMedCrossRefGoogle Scholar
  25. 25.
    Udvary, É., Végh, Á., and Szekeres, L. (1991) 7-oxo-PgI2 induced late protective action from arrhythmias due to local myocardial ischaemia. Bratysl. Lek. Listy 92, 146–149.Google Scholar
  26. 26.
    Krause, E. G. and Szekeres, L. (1995) On the mechanism and possible therapeutic application of delayed adaptation of the heart to stress situations. Mol. Cell. Biochem. 147, 115–122.PubMedCrossRefGoogle Scholar
  27. 27.
    Szekeres, L., Szilvássy, Z., Udvary, É., and Végh Á. (1988) 7-oxo-PgI2 induced late appearing protection against ouabain induced cardiac arrhythmias in anesthetized guinea pigs. Pharmacol. Res. Commun. 20, 77–78.CrossRefGoogle Scholar
  28. 28.
    Szilvássy, Z., Szekeres, L., Udvary, É., and Végh, Á. (1988) On the 7-oxo-PgI2 induced lasting protection against ouabain arrhythmias in anesthetized guinea pigs. Biomed. Biochim. Acta 47(Suppl.), 35–38.Google Scholar
  29. 29.
    Szilvássy, Z., Szekeres, L., Udvary, É., Karcsê, S., and Végh, Á. (1991) 7-oxo-PgI2 dramatically increases the safety margin of digitalis. Bratisl. Lek. Listy 92, 134–137.PubMedGoogle Scholar
  30. 30.
    Szekeres, L., Szilvássy, Z., Udvary, É., and Végh, Á. (1989) 7-oxo-PgI2 induced late appearing and long-lasting electrophysiological changes in the heart in situ of the rabbit, guinea pig, dog and cat. J. Mol. Cell. Cardiol. 21, 545–554.PubMedCrossRefGoogle Scholar
  31. 31.
    Szekeres, L., Németh, M., Papp, J. Gy., and Udvary, É. (1990) Short incubation with 7-oxo-prostacyclin induces long lasting prolongation of repolarisation time and effective refractory period in rabbit papillary muscle preparation. Cardiovasc. Res. 24, 37–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Borchert, G., Bartel, S., Beyerdorfer, I., Kuttner, I., Szekeres, L., and Krause, E. G. (1994) Long lasting anti-adrenergic effect of 7-oxo-prostacyclin in the heart: A cycloheximide sensitive increase of phosphodiesterase isoform I and IV activities. Mol. Cell. Biochem. 132, 57–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Dzurba, A., Ziegelhoeffer, A., Breier, A., Vrbjar, N., and Szekeres, L. (1991) Increased activity of sarcolemmal (Na+K+)-ATPase is involved in the late cardioprotective action of 7-oxo-prostacyclin. Cardioscience 2, 105–108.PubMedGoogle Scholar
  34. 34.
    Neugebauer, E. A. and Holaday, J. W., eds. (1993) Handbook of Mediators in Septic Shock. CRC Press, Boca Raton, FL.Google Scholar
  35. 35.
    Parratt, J. R. and Stoclet, J. C. (1995) Vascular smooth muscle functionunder conditions of sepsis and endotoxaemia, in Role of Nitric Oxide in Sepsis and ARDS (Fink, M. P. and Payen, D., eds.), Springer, Berlin, pp. 44–61.Google Scholar
  36. 36.
    Wu, S., Song, W., Furman, B. L., and Parratt, J. R. (1996) Delayed protection against ischaemia-induced ventricular arrhythmias and infarct size limitation by the prior administration of Escherichia coli endotoxin. Br. J. Pharmacol. 118, 2157–2163.Google Scholar
  37. 37.
    Brown, J. M., Grosso, M. A., Terada, L. S., Whitman, G. J. R., Banerjee, A., White, C. W., et al. (1989) Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc. Natl. Acad. Sci. USA 86, 2526–2530.Google Scholar
  38. 38.
    McDonough, K. H. and Causey, K. M. (1994) Effects of sepsis on recovery of the heart from 50 min ischemia. Shock 1, 432–437.PubMedCrossRefGoogle Scholar
  39. 39.
    Qureshi, N., Takayama, K., and Ribi, E. (1982) Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium. J. Biol. Chem. 257, 11,808–11,815.PubMedGoogle Scholar
  40. 40.
    Takayama, K., Qureshi, N., Ribi, E., and Cantrell, J. L. (1984) Separation and characterization of toxic and nontoxic forms of lipid A. Rev. Infect. Dis. 6, 439–443.PubMedCrossRefGoogle Scholar
  41. 41.
    Yao, Z., Elliott, G. T., and Gross, G. J. (1994) Monophosphoryl lipid A: A new approach for cardioprotection. Drug News Perspect. 7, 96–102.Google Scholar
  42. 42.
    Baxter, G. F., Goodwin R. W., Wright, M. J., Kerac, M., Heads, R. J., and Yellon, D. M. (1996) Myocardial protection after monophosphoryl lipid A: Studies of delayed antiischaemic properties in rabbit heart. Br. J. Pharmacol. 117, 1685–1692PubMedGoogle Scholar
  43. 43.
    Song, W., Furman, B. L., and Parratt, J. R. (1997) Monophosphoryl lipid A reduces both arrhythmia severity and infarct size in a rat model of ischaemia. Eur. J. Pharmacol. 345, 285–287.CrossRefGoogle Scholar
  44. 44.
    Vegh, A., Györgyi, K., Rastegar, M. A., Papp, J. Gy., and Parratt, J. R. (1999) Delayed protection against ventricular arrhythmias by monophosphoryl lipid-A in a canine model of ischaemia and reperfusion. Eur. J. Pharmacol. 382, 81–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Parratt, J. R. (1993) Endogenous myocardial protective (antiarrhythmic) substances. Cardiovasc. Res. 27, 693–702.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhao, L., Weber, P. A., Smith, J. R., Comerford, M. L., and Elliott, G. T. (1997) Role of inducible nitric oxide synthase in pharmacological “preconditioning” with monophosphoryl lipid A. J. Mol. Cell. Cardiol. 29, 1567–1576.PubMedCrossRefGoogle Scholar
  47. 47.
    Mei, D. A., Elliott, G. T., and Gross, G. J. (1996) KATP channels mediate late preconditioning against infarction produced by monophosphoryl lipid A. Am. J. Physiol. 271, H2723–H2729.PubMedGoogle Scholar
  48. 48.
    Vegh, A., Papp, J. Gy., Szekeres, L., and Parratt, J. R. (1993) Are ATP sensitive potassium channels involved in the pronounced antiarrhythmic effects of preconditioning? Cardiovasc. Res. 27, 38–643.CrossRefGoogle Scholar
  49. 49.
    Murry, C. E., Jennings, R. B., and Reimer, K. A. (1986) Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1126.PubMedGoogle Scholar
  50. 50.
    Marber, M. S. and Yellon, D. M., eds. (1996) Ischaemia: Preconditioning and Adaptation, BIOS Scientific, Oxford, UK.Google Scholar
  51. 51.
    Wainwright, C. L. and Parratt, J. R., eds. (1996) Myocardial Preconditioning, Springer-Verlag, New York.Google Scholar
  52. 52.
    Baxter, G. F., Marber, M. S., Patel, V. C., and Yellon, D. M. (1994) Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 90, 2993–3000.PubMedGoogle Scholar
  53. 53.
    Baxter, G. F. and Yellon, D. M. (1996) Delayed myocardial protection following ischemic preconditioning. Basic Res. Cardiol. 91, 53–56.PubMedCrossRefGoogle Scholar
  54. 54.
    Komori, S., Fujimaki, S., Ijili, H., Asakawa, T., Watanabe, Y., Tamura, Y., et al. (1990) Inhibitory effect of ischemic preconditioning on ischemic arrhythmia using a rat coronary artery ligation model. Jpn. J. Electrocardiol. 10, 774–782.Google Scholar
  55. 55.
    Vegh, A., Szekeres, L., and Parratt, J. R. (1990) Protective effects of preconditioning of the ischaemic myocardium involve cyclo-oxygenase products. Cardiovasc. Res. 24, 1020–1023.PubMedCrossRefGoogle Scholar
  56. 56.
    Vegh, A., Komori, S., Szekeres, L., and Parratt, J. R. (1992) Antiarrhythmic effects of preconditioning in anaesthetised dogs and rats. Cardiovasc. Res. 26, 487–495.PubMedCrossRefGoogle Scholar
  57. 57.
    Lawson, C. S., Coltart, D. J., and Hearse, D. J. (1993) “Dose”-dependency and temporal characteristics of protection by ischemic preconditioning against ischemia-induced arrhythmias in rat hearts. J. Mol. Cell. Cardiol. 25, 1391–1402.PubMedCrossRefGoogle Scholar
  58. 58.
    Piacentini, L., Wainwright, C. L., and Parratt, J. R. (1993) The antiarrhythmic effect of ischemic preconditioning in isolated rat heart involves a pertussis toxin sensitive mechanism. Cardiovasc. Res. 27, 674–680.PubMedCrossRefGoogle Scholar
  59. 59.
    Kaszala, K., Vegh, A., Papp, J. Gy., and Parratt, J. R. (1996) Time course of the protection against ischemia and reperfusion-induced ventricular arrhythmias resulting from brief periods of cardiac pacing. J. Mol. Cell. Cardiol. 28, 2085–2095.PubMedCrossRefGoogle Scholar
  60. 60.
    Vegh, A., Szekeres, L., and Parratt, J. R. (1991) Transient ischaemia induced by rapid cardiac pacing results in myocardial preconditioning. Cardiovasc. Res. 25, 1051–1053.PubMedCrossRefGoogle Scholar
  61. 61.
    Szekeres, L., Csik, V., and Udvary, E. (1976) Nitroglycerin and dipyridamole on cardiac metabolism and dynamics in a new experimental model of angina pectoris. J. Pharmacol. Exp. Ther. 196, 15–28.PubMedGoogle Scholar
  62. 62.
    Marshall, R. J. and Parratt, J. R. (1974) Drug-induced changes in blood flow in the acutely ischaemic canine myocardium; relationship to subendocardial driving pressure. Clin. Exp. Pharmacol. Physiol. 1, 97–112.CrossRefGoogle Scholar
  63. 63.
    Szilvassy, Z., Ferdinandy, P., Bor, P., Jakab, I., Lonovics, K., and Koltai, M. (1994) Ventricular overdrive pacing-induced anti-ischemic effect: A conscious rabbit model of preconditioning. Am. J. Physiol. 266, H2033–H2041.PubMedGoogle Scholar
  64. 64.
    Kis, A., Vegh, A., Papp, J. Gy., and Parratt, J. R. (1996) Repeated pacing widens the time window of delayed protection against ventricular arrhythmias in dogs J. Mol. Cell. Cardiol. 28, A229.Google Scholar
  65. 65.
    Parratt, J. R. and Vegh, A. (1997) Delayed protection against ventricular arrhythmias by cardiac pacing. Heart 78, 423–425.PubMedGoogle Scholar
  66. 66.
    Willich, S. N., Lewis, M., Löwel, H., Arntz, H-R., Schubert, F., and Schröder, R. (1993) Physical exertion as a trigger of acute myocardial infarction. Triggers and Mechanisms of Myocardial Infarction Study Group. N. Engl. J. Med. 329, 1684–1690.PubMedCrossRefGoogle Scholar
  67. 67.
    Mittleman, M. A., Maclurf, M., Toffler, G. H., Sherwood, J. B., Goldberg, R. J., and Muller, J. E. (1993) Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. Determinants of Myocardial Infarction Onset Study Investigators. N. Engl. J. Med. 329, 1677–1683.PubMedCrossRefGoogle Scholar
  68. 68.
    Tofler, G. H., Mittleman, M. A., and Muller, J. E. (1996) Physical activity and the triggering of myocardial infarction: the case for regular exercise. Heart 75, 323–325.PubMedCrossRefGoogle Scholar
  69. 69.
    Billman, G. E. W., Schwartz, P. J., and Stone, H. L. (1984) The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 69, 1182–1189.PubMedGoogle Scholar
  70. 70.
    Hull, S. S., Vanoli, E., Adamson, P. B., Verrier, R. L., Foreman, R. D., and Schwartz, P. J. (1994) Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia. Circulation 89, 548–552.PubMedGoogle Scholar
  71. 71.
    Kis, A., Vegh, A., Papp, J. Gy., and Parratt, J. R. (1999) Repeated cardiac pacing extends the time during which canine hearts are protected against ischaemia-induced arrhythmias: role of nitric oxide. J. Mol. Cell. Cardiol. 31, 1229–1241.PubMedCrossRefGoogle Scholar
  72. 72.
    Vegh, A., Babai, L., Kovacs, S. K., Papp, J. Gy., and Parratt, J. R. (2000) Exercise 24 h prior to coronary artery occlusion reduces arrhythmia severity in dogs: Role of nitric oxide. J. Physiol. 525, 14P.Google Scholar
  73. 73.
    Babai, L., Szigeti, Z., Parratt, J. R., and Vegh, A. (2002) Delayed cardioprotective effects of exercise in dogs are aminoguanidine sensitive: Possible involvement of nitric oxide. Clin. Sci. 102, 435–445.PubMedCrossRefGoogle Scholar
  74. 74.
    Kis, A., Vegh, A., Papp, J. Gy., and Parratt, J. R. (1999) Pacing-induced delayed protection against arrhythmias is attenuated by aminoguanidine, an inhibitor of nitric oxide synthase. Br. J. Pharmacol. 127, 1545–1550.PubMedCrossRefGoogle Scholar
  75. 75.
    Kis, A., Vegh, A., Papp, J. Gy., and Parratt, J. R. (2000) Cardiac pacing-induced delayed protection against ventricular arrhythmias: Evidence for the role of nitric oxide protection. Exp. Clin. Cardiol. 5, 17–24.Google Scholar
  76. 76.
    Lindquist, S. C. (1986) The heat-shock response. Annu. Rev.Biochem. 55, 1151–1191.PubMedCrossRefGoogle Scholar
  77. 77.
    Minowada, G. and Welch, W. J. (1995) Clinical implications of the stress response. J. Clin. Invest. 95, 3–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Currie, R. W., Karmazyn, M., Kloc, M., and Mailer, K. (1988) Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ. Res. 63, 543–549.PubMedGoogle Scholar
  79. 79.
    Hutter, M. E., Sievers, R. E., Barbosa, V., and Wolfe, C. L. (1994) Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation 89, 355–360.PubMedGoogle Scholar
  80. 80.
    Marber, M. S., Walker, J. M., Latchman, D. S., and Yellon, D. M. (1994) Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein. J. Clin. Invest. 93, 1087–1094.PubMedCrossRefGoogle Scholar
  81. 81.
    Steare, S. E. and Yellon, D. M. (1993) The protective effect of heat stress against reperfusion arrhythmias in the rat. J. Mol. Cell. Cardiol. 25, 1471–1481.PubMedCrossRefGoogle Scholar
  82. 82.
    Walker, D. M., Pasini, A., Kuckukoglu, S., Marber, M. S., Iliodromitis, E., Ferrari, R., et al. (1993) Heat stress limits infarct size in the isolated perfused rabbit heart. Cardiovasc. Res. 27, 962–967.PubMedCrossRefGoogle Scholar
  83. 83.
    Poupa, O., Krofta, K., Prochazka, J. (1966) Acclimation to simulated high altitude and acute cardiac necrosis. Fed. Proc. 25, 1243–1246.PubMedGoogle Scholar
  84. 84.
    Ziegelhöffer, A., Grünermel, J., Dzurba, A., Procházka, J., Kolár, F., Vrbjar, N., et al. (1993) Sarcolemmal cation transport systems in rat hearts acclimatised to high altitude hypoxia: Influence of 7-oxo-prostacyclin, in Heart Function in Health and Disease (Ostádal, B. and Dhalla, N. S., eds.), Kluwer Academic Publishers, Boston/Dordrecht/London, pp. 219–228.Google Scholar
  85. 85.
    Kolar, F. (1996) Cardioprotective effects of chronic hypoxia: Relation to preconditioning, in Myocardial Preconditioning (Wainwright, C. L. and Parratt, J. R., Eds.), Springer-Verlag, New York, pp. 261–275.Google Scholar
  86. 86.
    Bolli, R. (2000) The late phase of preconditioning. Circ. Res. 87, 972–983.PubMedGoogle Scholar
  87. 87.
    Hassanabad, Z. F., Furman, B. L., Parratt, J. R., and Aughey, E. (1998) Coronary endothelial dysfunction increases the severity of ischaemia-induced ventricular arrhythmias in rat isolated perfused hearts. Basic Res. Cardiol. 93, 241–249.PubMedCrossRefGoogle Scholar
  88. 88.
    Oxman, T., Arad, M., Klein, R., Avazov, N., and Rabinowitz, B. (1997) Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am. J. Physiol. 273, H1707–1712.PubMedGoogle Scholar
  89. 89.
    Carroll, R. and Yellon, D. M. (2000) Delayed cardioprotection in a human cardiomyocyte-derived cell line: the role of adenosine, p38MAP kinase and mitochondrial KATP. Basic Res. Cardiol. 95, 243–249.PubMedCrossRefGoogle Scholar
  90. 90.
    Ghosh, S., Standen, N. B., and Galinanes M. (2000) Preconditioning the human myocardium by simulated ischemia; Studies on the early and delayed protection. Cardiovasc. Res. 45, 339–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Szekeres, L., Szilvássy, Z., Ferdinándy, P., Nagy, I., Karcsu, S., and Csáti S. (1997) Delayed cardiac protection against harmful consequences of stress can be induced in experimental atherosclerosis in rabbits. J. Mol. Cell. Cardiol. 29, 1977–1983.PubMedCrossRefGoogle Scholar
  92. 92.
    Noda, T., Minaloguchi, S., Fuji, K., Hori, M., Ito, T., Kanmatsuse, K., et al. (1999) Evidence for the delayed effect in human ischemic preconditioning: Prospective multicenter study for preconditioning in acute myocardial infarction. J. Am. Coll. Cardiol. 34, 1966–1974.PubMedCrossRefGoogle Scholar
  93. 93.
    Tsoukas, A., Andonakoudis, H., and Christakos, S. (1995) Short-term exercise training effect after myocardial infarction on myocardial oxygen consumption indices and ischemic threshold. Arch. Phys. Med. Rehabil. 76, 262–265.PubMedCrossRefGoogle Scholar
  94. 94.
    Carrol, R. and Yellon D. M. (1999) Myocardial adaptation to ischaemia—the preconditioning phenomenon. Int. J. Cardiol. 68(Suppl 1), S93–S101.CrossRefGoogle Scholar
  95. 95.
    Dana, A., Baxter, G. F., Walker, J. M., and Yellon, D. M. (1998) Prolonging the delayed phase of myocardial protection. repetitive adenosine A1 receptor activation maintains rabbit myocardium in a preconditioned state. J. Am. Coll. Cardiol. 31, 1112–1119.CrossRefGoogle Scholar
  96. 96.
    Parratt, J. R. (1995) Possibilities for the pharmacological exploitation of ischaemic preconditioning. J. Mol. Cell. Cardiol. 27, 991–1000.PubMedCrossRefGoogle Scholar
  97. 97.
    Parratt, J. R. and Szekeres, L. (1995) Delayed protection of the heart against ischemia. Trends Pharmacol. Sci. 16, 351–355.PubMedCrossRefGoogle Scholar
  98. 98.
    Szekeres L. (2000) Delayed adaptation to stress—A clinically useful form of cardiac protection. Exp. Clin. Cardiol. 5, 116–121.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • László Szekeres
    • 1
  • James Parratt
    • 2
  1. 1.Department of Pharmacology and PharmacotherapyUniversity of SzegedSzegedHungary
  2. 2.Department of Physiology and PharmacologyUniversity of Strathclyde, Strathclyde Institute for Biomedical SciencesGlasgowScotland

Personalised recommendations