Skip to main content

Temperature-Sensitive Mutant Vaccines

  • Protocol
  • 1127 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 87))

Abstract

Many live virus vaccines derived by empirical routes exhibit temperature-sensitive (ts) phenotypes. The live virus vaccines that have been outstandingly successful in controlling poliomyelitis are the prime example of this phenomenon. The three live attenuated strains developed by Albert Sabin were derived from wild-type isolates by rapid sequential passage at high multiplicity of infection (MOI) in monkey tissue in vitro and in vivo, a regimen that yielded variants of reduced neurovirulence. Concomitantly, the three vaccine strains developed ts characteristics, a phenotype that correlated well with loss of neurovirulence. The reproductive capacity at supraoptimal (40°C) temperature, the rct phenotype, proved to be a useful property for monitoring the genetic stability of the attenuated virus during propagation, vaccine production, and replication in vaccinees. Nucleotide sequencing of the genome of the poliovirus type 3 attenuated virus and its neurovirulent wild-type progenitor (the Leon strain), revealed that only ten nucleotide changes, producing three amino acid substitutions, differentiated the attenuated derivative from its virulent parent despite its lengthy propagation in cultured cells. One of the three coding changes, a serine-to-phenylalanine substitution at position 2034 in the region encoding VP3, conferred the ts phenotype. A combination of nucleotide sequencing of virus recovered from a vaccine-associated case of paralysis and assay in primates of the neurovirulence of recombinant viruses prepared from infectious cDNA established that two of the ten mutations in the type three vaccine strain were associated with the loss of neurovirulence.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Almond, J. W. (1987) The attenuation of poliovirus neurovirulence. Annu. Rev. Microbiol. 41, 153–180.

    Article  PubMed  CAS  Google Scholar 

  2. Murphy, B. R., Hall, S. L., Kulkarni, A. B., Crowe, Jr. J. E., Collins, P. L., Connors, M., et al. (1994) An update on approaches to the development of respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3) vaccines. Virus Res. 32, 13–36.

    Article  PubMed  CAS  Google Scholar 

  3. Garcia-Sastre, A. and Palese, P. (1993) Genetic manipulation of negative-strand RNA virus genomes. Annu. Rev. Microbiol. 47, 765–790.

    Article  PubMed  CAS  Google Scholar 

  4. Schnell, M. J., Mebatsoin T., and Conzelmann, K-K. (1994) Infectious rabies viruses from cloned cDNA. EMBO J. 13, 4195–4203.

    PubMed  CAS  Google Scholar 

  5. Roner, M. R. and Joklik, W. K. (2001) Reovirus reverse genetics: Incorporation of the CAT gene into the reovirus genome. Proc. Natl. Acad. Sci. USA 98, 8036–8041.

    Article  PubMed  CAS  Google Scholar 

  6. Crowe, Jr., J. E. (1995) Current approaches to the development of vaccines against disease caused by respiratory syncytial virus (RSV) and parainfluenza virus (PIV). A meeting report of the WHO Programme for Vaccine Development. Vaccine 13, 415–421.

    Article  PubMed  Google Scholar 

  7. Juhasz, K., Whitehead S. S., Bui, P. T,, Biggs, J. M., Boulanger, C. A., Collins, P. L., et al. (1997) The temperature-sensitive (ts) phenotype of a cold-passaged (cp) live attenuated respiratory syncytial virus vaccine candidate, designated cpts53O, results from a single amino acid substitution in the L protein. J. Virol. 71, 5814–5819.

    PubMed  CAS  Google Scholar 

  8. Crowe, J. E., Bui, P. T., Silber, G. R., Elkins, W. R., Chanock, R. M., and Murphy, B. R. (1995) Cold-passaged, temperature-sensitive mutants of human respiratory syncytial virus (RSV) are highly attenuated, immunogenic, and protective in seronegative chimpanzees, even where RSV antibodies are infused shortly before immunization. Vaccine 13, 847–855.

    Article  PubMed  Google Scholar 

  9. Caplen, H., Peter, C. J., and Bishop, D. H. L. (1985) Mutagen-directed attenuation of Rift valley fever virus as a method for vaccine development. J. Gen. Virol. 66, 2271–2277.

    Article  PubMed  Google Scholar 

  10. McKay, E., Higgins, P., Tyrrell, D., and Pringle, C. R. (1988) Immunogenicity and pathogenicity of temperature-sensitive modified respiratory syncytial virus in adult volunteers. J. Med. Virol. 25, 411–421.

    Article  PubMed  CAS  Google Scholar 

  11. Pringle, C. R., Filipiuk, A. H., Robinson, B. S., Watt, P. J., Higgins, P., and Tyrrell, D. A. J. (1993) Immunogenicity and pathogenicity of a triple temperature-sensitive modified respiratory syncytial virus in adult volunteers. Vaccine 11, 473–478.

    Article  PubMed  CAS  Google Scholar 

  12. Knight, V. (1964) The use of volunteers in medical virology. Prog. Med. Virol. 6, 1–26.

    PubMed  CAS  Google Scholar 

  13. Gwaltney, Jr., J. M., Hendley, O., Hayden, F. G., McIntosh, K., Hollinger, F. B, Melnick, J. L., et al. (1994) Updated recommendations for safety-testing of viral inocula used in volunteer experiments on rhinovirus colds. Prog. Med. Virol. 39, 256–263.

    Google Scholar 

  14. Gimenez, H. B. and Pringle, C. R. (1978) Seven complementation groups of respiratory syncytial virus temperature-sensitive mutants. J. Virol. 27, 459–464.

    PubMed  CAS  Google Scholar 

  15. Ling, R. and Pringle, C. R. (1988) Turkey rhinotracheitis virus: in vivo and in vitro polypeptide synthesis. J. Gen. Virol. 69, 917–923.

    Article  PubMed  CAS  Google Scholar 

  16. Leppard, K. N. and Pringle, C. R. (1996) Virus Mutants, in Virology Methods Manual (Kangro, H. and Mahy, B. W. J., eds.), 11, 231–248, Academic Press Ltd., London.

    Chapter  Google Scholar 

  17. Pringle, C. R. (1985) Pneumoviruses, in Virology; A Practical Approach (Mahy, B. W. J., ed.), pp. 95–118, IRL Press, Oxford, and Washington, D.C.

    Google Scholar 

  18. Tolley, K. P., Marriott, A. C., Simpson, A., Plows, D. J., Matthews, D. A., Longhurst, S. J., et al. (1996) Identification of mutations contributing to the reduced virulence of a modified strain of respiratory syncytial virus. Vaccine 14, 1637–1646.

    Article  PubMed  CAS  Google Scholar 

  19. Pringle, C. R. (1990) The Genetics of Viruses, in Topley and Wilson’s Principles of Bacteriology, Virology and Immunity, 7th ed., Vol. 4 (Collier, L. H. and Timbury, M. C., eds.), Edward Arnold, London, Melbourne, and Auckland, pp. 69–104.

    Google Scholar 

  20. Watt, P. J., Robinson, B. S., Pringle, C. R., and Tyrrell, D. A. J. (1990) Determinants of susceptibility to challenge and the antibody response of adult volunteers given experimental respiratory syncytial virus vaccines. Vaccine 8, 231–236.

    Article  PubMed  CAS  Google Scholar 

  21. Murphy, B. R. (1993) Use of lived attenuated cold-adapted influenza A reassortant virus vaccines in infants, children, young adults and elderly adults. Infect. Dis. Clin. Pract. 2, 176–181.

    Article  Google Scholar 

  22. Partin, N. T., Chiu, P., and Coelingh, K. (1997) Genetically engineered live attenuated Influenza A vaccine candidates. J. Virol. 71, 2772–2778.

    Google Scholar 

  23. Whitehead, S. S., Firestone, C-Y., Karron, R. A., Crowe, J. E., Elkins, W. R., Collins, P. L., et al. (1999). Addition of a missense mutation present in the L gene of respiratory syncytial virus (RSV) cpts530/1030 to RSV vaccine candidate cpts248/404 increases its attenuation and temperature sensitivity. J. Virol. 73, 871–877.

    PubMed  CAS  Google Scholar 

  24. Bin, R. B., Ma, C-H., Kristoff, T., Cheng, X., and Jin, H. (2002) Identification of temperature sensitive mutations in the phosphoprotein of respiratory syncytial virus that are likely involved in its interaction with the nucleoprotein. J. Virol. 76, 2871–2880.

    Article  Google Scholar 

  25. Marriott, A. C. and Easton, A. J. (1999) Reverse genetics of the Paramyxoviridae. Adv. Virus Res. 53, 321–340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pringle, C.R. (2003). Temperature-Sensitive Mutant Vaccines. In: Robinson, A., Hudson, M.J., Cranage, M.P. (eds) Vaccine Protocols. Methods in Molecular Medicine™, vol 87. Humana Press. https://doi.org/10.1385/1-59259-399-2:19

Download citation

  • DOI: https://doi.org/10.1385/1-59259-399-2:19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-140-0

  • Online ISBN: 978-1-59259-399-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics