Skip to main content

Use of Stopped-Flow Fluorescence Spectroscopy to Measure Rapid Membrane Binding by Protein Kinase C

  • Protocol
Protein Kinase C Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 233))

  • 1862 Accesses

Abstract

In investigating the binding of ligands to proteins, many studies have been concerned with answering the fundamental questions proposed by Scatchard (1), that is, “How many” and “How tightly bound?” Although these questions are of utmost importance, the kineticist also wishes to know “How rapidly?” The development of rapid kinetic methodologies has provided many of the tools to answer the latter question (24). Suitably designed kinetic experiments may, in many instances, be able to provide answers to the former questions as well. Moreover, kinetic studies may yield mechanistic insight that cannot be elucidated from other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scatchard, G. (1949) The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672.

    Article  CAS  Google Scholar 

  2. Johnson, K. A. (1986) Rapid kinetic analysis of mechanochemical adenosinetriphosphatases. Methods Enzymol. 134, 677–705.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson, K. A. (1992) Transient-state kinetic analysis of enzyme reaction pathways in The Enzymes, 3rd ed, Vol. 20 (Sigman, D. S., ed.), Harcourt Brace Jovanovich, San Diego, pp. 1–60.

    Google Scholar 

  4. Gutfreund, H. (1999) Rapid-flow techniques and their contributions to enzymology. Trends Biochem. Sci. 24, 457–460.

    Article  PubMed  CAS  Google Scholar 

  5. Newton, A. C. and Johnson, J. E. (1998) Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim. Biophys. Acta 1376, 155–172.

    PubMed  CAS  Google Scholar 

  6. Berridge, M. J. (1990) Calcium oscillations. J. Biol. Chem. 265, 9583–9586.

    PubMed  CAS  Google Scholar 

  7. Werner, M. H., Bielawska, A. E., and Hannun, Y. A. (1992) Multiphasic generation of diacylglycerol in thrombin-activated human platelets. Biochem. J. 282, 815–820.

    PubMed  CAS  Google Scholar 

  8. Johnson, J. E., Giorgione, J., and Newton, A. C. (2000) The C1 and C2 domains of protein kinase C are independent membrane targeting modules, with specificity for phosphatidylserine conferred by the C1 domain. Biochemistry 39, 11,360–11,369.

    Article  PubMed  CAS  Google Scholar 

  9. Orr, J. W. and Newton, A. C. (1992) Interaction of protein kinase C with phosphatidylserine. 1. Cooperativity in lipid binding. Biochemistry 31(19), 4661–4667.

    Article  PubMed  CAS  Google Scholar 

  10. Ananthanarayanan, B., Das, S., Rhee, S. G., Murray, D., and Cho, W. (2002) Membrane targeting of C2 domains of phospholipase C-δ isoforms. J. Biol. Chem. 277, 3568–3575.

    Article  PubMed  CAS  Google Scholar 

  11. Nalefski, E. A. and Falke, J. J. (2002) Use of fluorescence resonance energy transfer to monitor Ca2+-triggered membrane docking of C2 domains. Methods Mol. Biol. 172, 295–303.

    PubMed  CAS  Google Scholar 

  12. Bazzi, M. D. and Nelsestuen, G. L. (1987) Association of protein kinase C with phospholipid vesicles. Biochemistry 26, 115–122.

    Article  PubMed  CAS  Google Scholar 

  13. Beechem, J. M. (1992) Global analysis of biochemical and biophysical data. Methods Enzymol. 210, 37–53.

    Article  PubMed  CAS  Google Scholar 

  14. Nalefski, E. A. and Newton, A. C. (2001) Membrane binding kinetics of protein kinase C βII mediated by the C2 domain. Biochemistry 40, 13,216–13,229.

    Article  PubMed  CAS  Google Scholar 

  15. Gill, S. C. and von Hippel, P. H. (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182(2), 319–326.

    Article  PubMed  CAS  Google Scholar 

  16. Smith, P. K., Krohn, R. I., Hermanson, G. T, and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  17. Bartlett, G. R. (1958) Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468.

    Google Scholar 

  18. Arbuzova, A., Wang, J., Murray, D., Jacob, J., Cafiso, D. S., and McLaughlin, S. (1997). Kinetics of interaction of the myristoylated alanine-rich C kinase substrate, membranes, and calmodulin. J. Biol. Chem. 272, 27,167–27,177.

    Article  PubMed  CAS  Google Scholar 

  19. Taylor, J. R. (1997) An Introduction to Error Analysis, 2nd ed, University Science Books, Sausalito, CA.

    Google Scholar 

  20. Mannervik, B. (1982). Regression analysis, experimental error, and statistical criteria in the design and analysis of experiments for discrimination between rival kinetic models. Methods Enzymol. 87, 370–390.

    Article  PubMed  CAS  Google Scholar 

  21. Straume, M. and Johnson, M. L. (1992) Analysis of residuals: criteria for determining goodness-of-fit. Methods Enzymol. 210, 87–105.

    Article  PubMed  CAS  Google Scholar 

  22. Tonomura, B., Nakatani, H., Ohnishi, M., Yamaguchi-Ito, J., and Hiromi, K. (1978) Test reactions for a stopped-flow apparatus. Reduction of 2,6-dichlorophenolindophenol and potassium ferricyanide by L-ascorbic acid. Anal. Biochem. 84, 370–383.

    Article  PubMed  CAS  Google Scholar 

  23. Torok, K. and Trentham, D. R. (1994) Mechanism of 2-chloro-(ε-amino-Lys75)-[6-[4-(N,N-diethylamino)phenyl]-1,3,5-triazin-4-yl]calmodulin interactions with smooth muscle myosin light chain kinase and derived peptides. Biochemistry 33, 12,807–12,820.

    Article  PubMed  CAS  Google Scholar 

  24. Zhao, Z., Rothery, R. A., and Weiner, J. H. (1999) Stopped-flow studies of the binding of 2-n-heptyl-4-hydroxyquinoline-N-oxide to fumarate reductase of Escherichia coli. Eur. J. Biochem. 260, 50–56.

    Article  PubMed  CAS  Google Scholar 

  25. Lacourciere, K. A., Stivers, J. T., and Marino, J. P. (2000) Mechanism of neomycin and Rev peptide binding to the Rev responsive element of HIV-1 as determined by fluorescence and NMR spectroscopy. Biochemistry 39, 5630–5641.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nalefsk, E.A., Newton, A.C. (2003). Use of Stopped-Flow Fluorescence Spectroscopy to Measure Rapid Membrane Binding by Protein Kinase C. In: Newton, A.C. (eds) Protein Kinase C Protocols. Methods in Molecular Biology™, vol 233. Humana Press. https://doi.org/10.1385/1-59259-397-6:115

Download citation

  • DOI: https://doi.org/10.1385/1-59259-397-6:115

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-068-7

  • Online ISBN: 978-1-59259-397-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics