Genetic Manipulation of Protein Kinase C In Vivo

  • Alex Toker
Part of the Methods in Molecular Biology™ book series (MIMB, volume 233)

Abstract

Studies since 1980 have established that protein kinase C (PKC) regulates a plethora of downstream signaling pathways leading to numerous cellular responses. Although much is known concerning PKC regulation by lipid cofactors and phosphorylation, the direct protein substrates that relay the PKC signal remain largely undescribed, although proteins such as myristoylated alanine-rich C kinase (MARCKS) and pleckstrin are well-known examples. Much of the work aimed at defining substrates of PKC has relied on the use of phorbol esters (see  Chapter 34) as well as small molecule inhibitors (see  Chapter 33). Because of concerns with lack of specificity and cytotoxicity associated with these approaches, new methodologies have been developed to more accurately and specifically manipulate PKC activity in cells and thus tackle the mechanisms by which PKC regulates cell function.

Keywords

Tyrosine Carboxyl Electrophoresis Polyacrylamide Dodecyl 

References

  1. 1.
    Letiges, M., Plomann, M., Standaert, M. L., Bandyopadhyay, G., Sajan, M. P., Kanoh, Y., et al. (2002) Knockout of PKCalpha Enhances Insulin Signaling Through PI3K. Mol. Endocrinol. 16, 847–858.PubMedCrossRefGoogle Scholar
  2. 2.
    Leitges, M., Schmedt, C., Guinamard, R., Davoust, J., Schaal, S., Stabel, S., et al. (1996) Immunodeficiency in protein kinase cbeta-deficient mice. Science 273, 788–791.PubMedCrossRefGoogle Scholar
  3. 3.
    Standaert, M. L., Bandyopadhyay, G., Galloway, L., Soto, J., Ono, Y., Kikkawa, U., et al. (1999) Effects of knockout of the protein kinase C beta gene on glucose transport and glucose homeostasis. Endocrinology 140, 4470–4477.PubMedCrossRefGoogle Scholar
  4. 4.
    Weeber, E. J., Atkins, C. M., Selcher, J. C., Varga, A. W., Mirnikjoo, B., Paylor, R., et al. (2000) A role for the beta isoform of protein kinase C in fear conditioning. J. Neurosci. 20, 5906–5914.PubMedGoogle Scholar
  5. 5.
    Suzuma, K., Takahara, N., Suzuma, I., Isshiki, K., Ueki, K., Leitges, M., et al. (2002) Characterization of protein kinase C beta isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factorinduced endothelial cell proliferation, and retinal neovascularization. Proc. Natl. Acad. Sci. USA 99, 721–726.PubMedCrossRefGoogle Scholar
  6. 6.
    Narita, M., Aoki, T., Ozaki, S., Yajima, Y., and Suzuki, T. (2001) Involvement of protein kinase Cgamma isoform in morphine-induced reinforcing effects. Neuroscience 103, 309–314.PubMedCrossRefGoogle Scholar
  7. 7.
    Miyamoto, A., Nakayama, K., Imaki, H., Hirose, S., Jiang, Y., Abe, M., et al. (2002) Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature 416, 865–869.PubMedCrossRefGoogle Scholar
  8. 8.
    Mecklenbrauker, I., Saijo, K., Zheng, N. Y., Leitges, M., and Tarakhovsky, A. (2002) Protein kinase Cdelta controls self-antigen-induced B-cell tolerance. Nature 416, 860–865.PubMedCrossRefGoogle Scholar
  9. 9.
    Olive, M. F., Mehmert, K. K., Messing, R. O., and Hodge, C. W. (2000) Reduced operant ethanol self-administration and in vivo mesolimbic dopamine responses to ethanol in PKCepsilon-deficient mice. Eur. J. Neurosci. 12, 4131–4140.PubMedCrossRefGoogle Scholar
  10. 10.
    Castrillo, A., Pennington, D. J., Otto, F., Parker, P. J., Owen, M. J., and Bosca, L. (2001) Protein kinase Cepsilon is required for macrophage activation and defense against bacterial infection. J. Exp. Med. 194, 1231–1242.PubMedCrossRefGoogle Scholar
  11. 11.
    Sun, Z., Arendt, C. W., Ellmeier, W., Schaeffer, E. M., Sunshine, M. J., Gandhi, L., et al. (2000) PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 404, 402–407.PubMedCrossRefGoogle Scholar
  12. 12.
    Leitges, M., Sanz, L., Martin, P., Duran, A., Braun, U., Garcia, J. F., et al. (2001) Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway. Mol. Cell. 8, 771–780.PubMedCrossRefGoogle Scholar
  13. 13.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  14. 14.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.PubMedCrossRefGoogle Scholar
  15. 15.
    Kisielow, M., Kleiner, S., Nagasawa, M., Faisal, A., and Nagamine, Y. (2002) Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA. Biochem. J. 363, 1–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia-Paramio, P., Cabrerizo, Y., Bornancin, F., and Parker, P. J. (1998) The broad specificity of dominant inhibitory protein kinase C mutants infers a common step in phosphorylation. Biochem. J. 333, 631–636.PubMedGoogle Scholar
  17. 17.
    Soh, J. W., Lee, E. H., Prywes, R., and Weinstein, I. B. (1999) Novel roles of specific isoforms of protein kinase C in activation of the c-fos serum response element. Mol. Cell. Biol. 19, 1313–1324.PubMedGoogle Scholar
  18. 18.
    Cenni, V., Doppler, H., Sonnenburg, E. D., Maraldi, N., Newton, A. C., and Toker, A. (2002) Regulation of novel protein kinase C epsilon by phosphorylation. Biochem. J. 363, 537–545.PubMedCrossRefGoogle Scholar
  19. 19.
    House, C. and Kemp, B. E. (1987) Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 238, 1726–1728.PubMedCrossRefGoogle Scholar
  20. 20.
    House, C. and Kemp, B. E. (1990) Protein kinase C pseudosubstrate prototope: structure-function relationships. Cell Signal. 2, 187–190.PubMedCrossRefGoogle Scholar
  21. 21.
    Orr, J. W., Keranen, L. M., and Newton, A. C. (1992) Reversible exposure of the pseudosubstrate domain of protein kinase-C by phosphatidylserine and diacylglycerol. J. Biol. Chem. 267, 15,263–15,266.PubMedGoogle Scholar
  22. 22.
    Dutil, E. M. and Newton, A. C. (2000) Dual role of pseudosubstrate in the coordinated regulation of protein kinase C by phosphorylation and diacylglycerol. J. Biol. Chem. 275, 10,697–10,701.PubMedCrossRefGoogle Scholar
  23. 23.
    Pears, C. J., Kour, G., House, C., Kemp, B. E., and Parker, P. J. (1990) Mutagenesis of the pseudosubstrate site of protein kinase C leads to activation. Eur. J. Biochem. 194, 89–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Genot, E. M., Parker, P. J., and Cantrell, D. A. (1995) Analysis of the role of protein kinase C-alpha,-epsilon, and-zeta in T cell activation. J. Biol. Chem. 270, 9833–9839.PubMedCrossRefGoogle Scholar
  25. 25.
    Chou, M. M., Hou, W., Johnson, J., Graham, L. K., Lee, M. H., Chen, C. S., et al. (1998) Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr. Biol. 8, 1069–1077.PubMedCrossRefGoogle Scholar
  26. 26.
    Kampfer, S., Hellbert, K., Villunger, A., Doppler, W., Baier, G., Grunicke, H. H., et al. (1998) Transcriptional activation of c-fos by oncogenic Ha-Ras in mouse mammary epithelial cells requires the combined activities of PKC-lambda, epsilon and zeta. EMBO J. 17, 4046–4055.PubMedCrossRefGoogle Scholar
  27. 27.
    Lu, Y., Jamieson, L., Brasier, A. R., and Fields, A. P. (2001) NF-kappaB/RelA transactivation is required for atypical protein kinase C iota-mediated cell survival. Oncogene 20, 4777–4792.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang, A., Nomura, M., Patan, S., and Ware, J. A. (2002) Inhibition of protein kinase Calpha prevents endothelial cell migration and vascular tube formation in vitro and myocardial neovascularization in vivo. Circ. Res. 90, 609–616.PubMedCrossRefGoogle Scholar
  29. 29.
    Lu, D., Yang, H., Lenox, R. H., and Raizada, M. K. (1998) Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons. J. Cell. Biol. 142, 217–227.PubMedCrossRefGoogle Scholar
  30. 30.
    Liedtke, C. M. and Cole, T. (1997) Antisense oligodeoxynucleotide to PKC-delta blocks alpha 1-adrenergic activation of Na-K-2Cl cotransport. Am. J. Physiol. 273, C1632–C1640.PubMedGoogle Scholar
  31. 31.
    Mehta, K. D., Radominska-Pandya, A., Kapoor, G. S., Dave, B., and Atkins, B. A. (2002) Critical role of diacylglycerol-and phospholipid-regulated protein kinase C epsilon in induction of low-density lipoprotein receptor transcription in response to depletion of cholesterol. Mol. Cell. Biol. 22, 3783–3793.PubMedCrossRefGoogle Scholar
  32. 32.
    Hussaini, I. M., Karns, L. R., Vinton, G., Carpenter, J. E., Redpath, G. T., Sando, J. J., et al. (2000) Phorbol 12-myristate 13-acetate induces protein kinase cetaspecific proliferative response in astrocytic tumor cells. J. Biol. Chem. 275, 22,348–22,354.PubMedCrossRefGoogle Scholar
  33. 33.
    Sparatore, B., Patrone, M., Passalacqua, M., Pedrazzi, M., Pontremoli, S., and Melloni, E. (2000) Human neuroblastoma cell differentiation requires protein kinase C-theta. Biochem. Biophys. Res. Commun. 279, 589–594.PubMedCrossRefGoogle Scholar
  34. 34.
    Spitaler, M., Villunger, A., Grunicke, H., and Uberall, F. (2000) Unique structural and functional properties of the ATP-binding domain of atypical protein kinase C-iota. J. Biol. Chem. 275, 33,289–33,296.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Alex Toker
    • 1
  1. 1.Department of Pathology, Beth Israel Deaconess Medical SchoolHarvard Medical SchoolBoston

Personalised recommendations