Methods for Detecting Binding Proteins

An Introduction
  • Gerda Endemann
  • Daria Mochly-Rosen
Part of the Methods in Molecular Biology™ book series (MIMB, volume 233)


The identification of proteins that bind protein kinase C (PKC) is essential to understanding the contributions of PKCs to signaling pathways. A number of the methods are uniquely applicable to this family of serine/threonine kinases. The PKC family contains at least 10 closely related members with overlapping substrate specificities (1,2). Therefore, isozyme-specific phosphorylation of substrates must be caused in part by isozyme-specific subcellular localization, isozyme-specific proximity to substrates, and/or to regulation of activity in an isozyme-specific manner (3). There is some selectivity in the regulation of catalytic activity of PKC classes rather than individual isozymes. The classic (cPKC) enzymes α, βI, βII, and γPKC are activated by phosphatidylserine (PS), diacylglycerol (DG), and calcium, the novel (nPKC) enzymes δ, ε, θ, and ηPKC require PS and DG only, and the atypical (aPKC) enzymes ζ, and λ/ιPKC are activated by PS and possibly phosphatidylinositol-3,4,5-trishosphate, and ceramide (1,4,5).


Zinc Finger Domain Zinc Finger Motif Zinc Finger Region Atypical PKCs Succinimidyl Propionate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Newton, A. C. (1995) Protein kinase C: Structure, function, and regulation. J. Biol. Chem. 270, 28,495–28,498.PubMedCrossRefGoogle Scholar
  2. 2.
    Nishikawa, K., Toler, A., Johannes, F.-J., Zhou, S., and Cantley, L. C. (1997) Determination of the specific substrate sequence motifs of protein kinase C isozymes. J. Biol. Chem. 272, 952–960.PubMedCrossRefGoogle Scholar
  3. 3.
    Mochly-Rosen, D. (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268, 247–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Nishizuka, Y. (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.PubMedCrossRefGoogle Scholar
  5. 5.
    Toker, A. (1998) Signaling through protein kinase C. Fronti. Biosci. 3, d1134–d1147.Google Scholar
  6. 6.
    Teruel, M. N. and Meyer, T. (2000) Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103, 181–184.PubMedCrossRefGoogle Scholar
  7. 7.
    Oka, N., Yamamoto, M., Schwencke, C., Kawabe, J. Ebina, T., Ohno, S., et al. (1997) Caveolin interaction with protein kinase C. J. Biol. Chem. 272, 33,416–33,421.PubMedCrossRefGoogle Scholar
  8. 8.
    Prekeris, T., Hernandez, R. M., Mayhew, M. W., White, M. K., and Terrian, D. M. (1998) Molecular analysis of the interactions between protein kinase C-epsilon and filamentous actin. J. Biol. Chem. 273, 26,790–26,798.PubMedCrossRefGoogle Scholar
  9. 9.
    Staudinger, J., Lu, J., and Olson, E. N. (1997) Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J. Biol. Chem. 272, 32,019–32,024.PubMedCrossRefGoogle Scholar
  10. 10.
    Ohno, Y., Fuji, T., Ogita, K., Kikkawa, U., Igarashi, K., and Nishizuka, Y. (1989) Protein kinase C zetz subspecies from rat brain: its structure, expression, and properties. Proc. Natl. Acad. Sci. USA 86, 3099–3103.CrossRefGoogle Scholar
  11. 11.
    Lehel, C., Olah, Z., Jakab, G., and Anderson, W. B. (1995) Protein kinase C epsilon is localized to the Golge via its zinc-finger domain and modulates Golgi function. Proc. Natl. Acad. Sci. USA 92, 1406–1410.PubMedCrossRefGoogle Scholar
  12. 12.
    Mochly-Rosen, D., Miller, K. G., Scheller, R. H., Khaner, H., Lopez, J., and Smith, B. L. (1992) p65 fragments, homologous to the C2 region of protein kinase C, bind to the intracellular receptors for protein kinase C. Biochemistry 31, 8120–8124.PubMedCrossRefGoogle Scholar
  13. 13.
    Ron, D., Luo, J., and Mochly-Rosen, D. (1995) C2 region-derived peptides inhibit translocation and function of beta protein kinase C in vivo. J. Biol. Chem. 270, 24,180–24,187.PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson, J. A., Gray, M. O., Chen, C. H., and Mochly-Rosen, D. (1996) A protein kinase C translocation inhibitor as an isozymeselective antagonist of cardiac function. J. Biol. Chem. 271, 24,962–24,966.PubMedCrossRefGoogle Scholar
  15. 15.
    Gokmen-Polar, Y. and Fields, A. P. (1998) Mapping of a molecular determinant for protein kinase C betaII isozyme function. J. Biol. Chem. 273, 20,261–20,266.PubMedCrossRefGoogle Scholar
  16. 16.
    Stebbins, E. G. and Mochly-Rosen, D. (2001) Binding specificity for RACK1 resides in the V5 region of betaII protein kinase C. J. Biol. Chem. 276, 29,644–29,650.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuroda, S., Tokunaga, C. Kiyohara, Y., Higuchi, O., Konishi, H., Mizuno, K., et al. (1996) Protein-protein interaction of zinc finger LIM domains with protein kinase C. J. Biol. Chem. 271, 31,029–31,032.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhou, Q., RuizLozano, P., Martone, M. E., and Chen, J. (1999) Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J. Biol. Chem. 274, 19,807–19,813.PubMedCrossRefGoogle Scholar
  19. 19.
    Huber, A., Sander, P., and Paulsen, R. (1996) Phosphorylation of the InaD gene product, a photoreceptor membrane protein required for recovery of visual excitation. J. Biol. Chem. 271, pp. 11,710–11,717.PubMedCrossRefGoogle Scholar
  20. 20.
    Ron, D., Chen, C. H., Caldwell, J., Jamieson, L., Orr, E., and Mochly-Rosen, D. (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins (published erratum appears in Proc. Natl. Acad. Sci. USA 1995 Feb 28;92(5):2016). Proc. Natl. Acad. Sci. USA 91, 839–843.PubMedCrossRefGoogle Scholar
  21. 21.
    Rodriguez, M. M., Ron, D., Touhara, K., Chen, C. H., and Mochly-Rosen, D. (1999) RACK1, a protein kinase C anchoring protein, coordinates the binding of activated protein kinase C and select pleckstrin homology domains in vitro. Biochemistry 38, 13,787–13,794.PubMedCrossRefGoogle Scholar
  22. 22.
    Yao, L., Kawakami, Y., and Kawakami, T. (1994) The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc. Natl. Acad. Sci. USA 91, 9175–9179.PubMedCrossRefGoogle Scholar
  23. 23.
    Konishi, H., Shinomura, T., Kuroda, S., Ono, Y., and Kikkawa, U. (1994) Molecular cloning of rat RAC protein kinase alpha and beta and their association with protein kinase C zeta. Biochem. Biophys. Res. Commun. 205, 817–825.PubMedCrossRefGoogle Scholar
  24. 24.
    Song, C., Vondriska, T. M., Wang, G. W., Klein, J. B., Cao, X., Zhang, J., et al. (2002) Molecular conformation dictates signaling module formation: example of PKCepsilon and Src tyrosine kinase. Am. J. Physiol. Heart Circ. Physiol. 282, H1166–H1171.PubMedGoogle Scholar
  25. 25.
    Diaz-Meco, M. T., Municio, M. M., Sanchez, P., Lozano, J., and Moscat, J. (1996) Lambda-interacting protein, a novel protein that specifically interacts with the zinc finger domain of the atypical protein kinase C isotype lambda/iota and stimulates its kinase activity in vitro and in vivo. Mol. Cell Biol. 16, 105–114.PubMedGoogle Scholar
  26. 26.
    Diaz-Meco, M. T., Municio, M. M., Frutos, S., Sanchez, P., Lozano, J., Sanz, L., et al. (1996) The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell 86, 777–786.PubMedCrossRefGoogle Scholar
  27. 27.
    Puls, A., Schmidt, S., Grawe, F., and Stabel, S. (1997) Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. Proc. Natl. Acad. Sci. USA 94, 6191–6196.PubMedCrossRefGoogle Scholar
  28. 28.
    Csukai, M. and Mochly-Rosen, D. (1998) Molecular genetic approaches II: expression interaction cloning, in Methods in Molecular Biology (R. A. Clegg, ed.), Humana Press Inc., Totowa, NJ, pp. 133–139.Google Scholar
  29. 29.
    Schechtman, D. and Mochly-Rosen, D. (2002) Isozyme-specific inhibitors and activators of protein kinase C. Methods Enzymol. 345, 470–489.PubMedCrossRefGoogle Scholar
  30. 30.
    Ron, D., Jiang, Z., Yao, L., Vagts, A., Diamond, I., and Gordon, A. (1999) Coordinated movement of RACK1 with activated betaII PKC. J. Biol. Chem. 274, 27,039–27,046.PubMedCrossRefGoogle Scholar
  31. 31.
    Ron, D. and Mochly-Rosen, D. (1995) An autoregulatory region in protein kinase C: the pseudoanchoring site. Proc. Natl. Acad. Sci. USA 92, 492–496.PubMedCrossRefGoogle Scholar
  32. 32.
    Chang, B. Y., Conroy, K. B., Machleder, E. M., and Cartwright, C. A. (1998) RACK1, a receptor for activated C Kinase and a homologue of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol. Cell. Biol. 18, 3245–3256.PubMedGoogle Scholar
  33. 33.
    Schechtman, D. and Mochly-Rosen, D. (2001) Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20, 6339–6347.PubMedCrossRefGoogle Scholar
  34. 34.
    Ellis, J. H., Ashman, C., Burden, M. N., Kilpatrick, K. E., Morse, M. A., and Hamblin, P. A. (2000) GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28. J. Immunol. 164, 5805–5814.PubMedGoogle Scholar
  35. 35.
    Csukai, M., Chen, C. H., De Matteis, M. A., and Mochly-Rosen, D. (1997) The coatomer protein beta′-COP, a selective binding protein (RACK) for protein kinase Cepsilon. J. Biol. Chem. 272, 29,200–29,206.PubMedCrossRefGoogle Scholar
  36. 36.
    Balafanova, Z., Bolli, R., Zhang, J., Zheng, Y., Pass, J. M., Bhatnagar, A., et al. (2002) Nitric oxide induces nitration of PKC epsilon, facilitating PKC epsilon translocation via inhanced PKC epsilon-RACK2 interactions: a novel mechanism of NO-triggered activation of PKCepsilon. J. Biol. Chem. 277, 15,021–15,027.PubMedCrossRefGoogle Scholar
  37. 37.
    Harrison-Lavoie, K. J., Lewis, V. A., Hynes, G. M., Collison, K. S., Nutland, E., and Willison, K. R. (1993) A 102 kDa subunit of a Golgi-associated particle has homology to beta subunits of trimeric G proteins. EMBO J. 12, 2847–2853.PubMedGoogle Scholar
  38. 38.
    Chen, C. H., Gray, M. O., and Mochly-Rosen, D. (1999) Cardioprotection from ischemia by a brief exposure to physiological levels of ethanol: role of epsilon protein kinase C. Proc. Natl. Acad. Sci. USA 96, 12,784–12,789.PubMedCrossRefGoogle Scholar
  39. 39.
    Rodriguez, M. M., Chen, C. H., Smith, B. L., and Mochly-Rosen, D. (1999) Characterization of the binding and phosphorylation of cardiac calsequestrin by epsilon protein kinase C. FEBS Lett. 454, 240–246.PubMedCrossRefGoogle Scholar
  40. 40.
    Izumi, Y., Hirose, T., Tamai, Y., Hirai, S., Nagashima, Y., Fujimoto, T., et al. (1998) An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homoloque of Caenorhabditis elegans polarity protein PAR-3. J. Cell. Biol. 143, 95–106.PubMedCrossRefGoogle Scholar
  41. 41.
    Suzuki, A., Yamanaka, T., Hirose, T., Manabe, N., Mizuno, K., Shimizu, M., et al. (2001) Atypical protein kinase C is involved in the evolutionarily conserved PAR protein complex and plays a critical role in establishing epithelia-specific junctional structures. J. Cell. Biol. 152, 1183–1196.PubMedCrossRefGoogle Scholar
  42. 42.
    Izumi, Y., Hirai, S., Tamai, Y., Fujise-Matsuoka, A., Nishimura, Y., and Ohno, S. (1997) A protein kinase C delta-binding protein SRBC whose expression is induced by serum starvation. J. Biol. Chem. 272, 7381–7389.PubMedCrossRefGoogle Scholar
  43. 43.
    Chapline, C., Ramsay, K., Klauck, T., and Jaken, S. (1993) Interaction cloning of protein kinase C substrates. J. Biol. Chem. 268, 6858–6861.PubMedGoogle Scholar
  44. 44.
    Jaken, S. and Parker, P. J. (2000) Protein kinase C binding partners. Bioessays 22, 245–254.PubMedCrossRefGoogle Scholar
  45. 45.
    Mineo, C., Ying, Y. S., Chapline, C., Jaken, S., and Anderson, R. G. (1998) Targeting of protein kinase Calpha to caveolae. J. Cell. Biol. 141, 601–610.PubMedCrossRefGoogle Scholar
  46. 46.
    Diviani, D. and Scott, J. D. (2001) AKAP signaling complexes at the cytoskeleton. J. Cell Sci. 114, 1431–1437.PubMedGoogle Scholar
  47. 47.
    Feliciello, A., Gottesman, M. E., and Avvedimento, E. V. (2001) The biological functions of A-kinase anchor proteins. J. Mol. Biol. 308, 99–114.PubMedCrossRefGoogle Scholar
  48. 48.
    Chang, S., Kim, J. H., and Shin, J. (2002) p62 forms a ternary complex with PKCzeta and PAR-4 and antagonizes PAR-4-induced PKCzeta inhibition. FEBS Lett. 510, 57–61.PubMedCrossRefGoogle Scholar
  49. 49.
    Tokunaga, C., Kuroda, S., Tatematsu, K., Nakagawa, N., Ono, Y., and Kikkawa, U. (1998) Molecular cloning and characterization of a novel protein kinase C-interacting protein with structural motifs related to RBCC family proteins. Biochem. Biophys. Res. Commun. 244, 353–359.PubMedCrossRefGoogle Scholar
  50. 50.
    Bach, I. (2000) The LIM domain: regulation by association. Mech. Dev. 91, 5–17.PubMedCrossRefGoogle Scholar
  51. 51.
    Arber, S., Hunter, J. J., Ross, J., Jr., Hongo, M., Sansig, G., Borg, J., et al. (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403.PubMedCrossRefGoogle Scholar
  52. 52.
    Ping, P., Zhang, J., Pierce, W. M., Jr., and Bolli, R. (2001) Functional proteomic analysis of protein kinase C epsilon signaling complexes in the normal heart and during cardioprotection. Circ. Res. 88, 59–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Ettinger, S. L., Lauener, R. W., and Duronio, V. (1996) Protein kinase C delta specifically associates with phosphatidylinositol 3-kinase following cytokine stimulation. J. Biol. Chem. 271, 14,514–14,518.PubMedCrossRefGoogle Scholar
  54. 54.
    Kumar, V., Pandey, P., Sabatini, D., Kumar, M., Majumder, P. K., Bharti, A., et al. (2000) Functional interaction between RAFT1/FRAP/mTOR and protein kinase cdelta in the regulation of cap-dependent initiation of translation. EMBO J. 19, 1087–1097.PubMedCrossRefGoogle Scholar
  55. 55.
    Formisano, P., Oriente, F., Miele, C., Caruso, M., Auricchio, R., Vigliotta, G., et al. (1998) In NIH-3T3 fibroblasts, insulin receptor interaction with specific protein kinase C isoforms controls receptor intracellular routing. J. Biol. Chem. 273, 13,197–13,202.PubMedCrossRefGoogle Scholar
  56. 56.
    Jain, N., Zhang, T., Kee, W. H., Li, W., and Cao, X. (1999) Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J. Biol. Chem. 274, 24,392–24,400.PubMedCrossRefGoogle Scholar
  57. 57.
    Yoshida, K. and Kufe, D. (2001) Negative regulation of the SHPTP1 protein tyrosine phosphatase by protein kinase C delta in response to DNA damage. Mol. Pharmacol. 60, 1431–1438.PubMedGoogle Scholar
  58. 58.
    Shanmugam, M., Krett, N. L., Peters, C. A., Maizels, E. T., Murad, F. M., Kawakatsu, H., et al. (1998) Association of PKC delta and active Src in PMA-treated MCF-7 human breast cancer cells. Oncogene 16, 1649–1654.PubMedCrossRefGoogle Scholar
  59. 59.
    Oh, E. S., Woods, A., and Couchman, J. R. (1997) Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C. J. Biol. Chem. 272, 8133–8136.PubMedCrossRefGoogle Scholar
  60. 60.
    Akimoto, K., Nakaya, M., Yamanaka, T., Tanaka, J., Matsuda, S., Weng, Q. P., et al. (1998) Atypical protein kinase Clambda binds and regulates p70 S6 kinase. Biochem. J. 335, 417–424.PubMedGoogle Scholar
  61. 61.
    Zhang, X. A., Bontrager, A. L., and Hemler, M. E. (2001) Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J. Biol. Chem. 276, 25,005–25,013.PubMedCrossRefGoogle Scholar
  62. 62.
    Ziegler, W. H., Tigges, U., Zieseniss, A., and Jockusch, B. M. (2002) A lipid-regulated docking site on vinculin for protein kinase C. J. Biol. Chem. 277, 7396–7404.PubMedCrossRefGoogle Scholar
  63. 63.
    Takahashi, M., Mukai, H., Oishi, K., Isagawa, T., and Ono, Y. (2000) Association of immature hypophosphorylated protein kinase cepsilon with an anchoring protein CG-NAP. J. Biol. Chem. 275, 34,592–34,596.PubMedCrossRefGoogle Scholar
  64. 64.
    Lim, Y. P., Low, B. C., Lim, J. Wong, E. S., and Guy, G. R. (1999) Association of atypical protein kinase C isotypes with the docker protein FRS2 in fibroblast growth factor signaling. J. Biol. Chem. 274, 19,025–19,034.PubMedCrossRefGoogle Scholar
  65. 65.
    Tsunoda, S., Sierralta, J., Sun, Y., Bodner, R., Suzuki, E., Becker, A., et al. (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249.PubMedCrossRefGoogle Scholar
  66. 66.
    Kumar, R. and Shieh, B. H. (2001) The second PDZ domain of INAD is a type I domain involved in binding to eye protein kinase C. Mutational analysis and naturally occurring variants. J. Biol. Chem. 276, 24,971–24,977.PubMedCrossRefGoogle Scholar
  67. 67.
    Robles-Flores, M., Rendon-Huerta, E., Gonzalez-Aguilar, H., Mendoza-Hernandez, G., Islas, S., Mendoza, V., Ponce-Castaneda, M. V., et al. (2002) p32 (gC1qBP) is a general protein kinase C (PKC)-binding protein; interaction and cellular localization of P32-PKC complexes in ray hepatocytes. J. Biol. Chem. 277, 5247–5255.PubMedCrossRefGoogle Scholar
  68. 68.
    Rendon-Huerta, E., Mendoza-Hernandez, G., and Robles-Flores, M. (1999) Characterization of calreticulin as a protein interacting with protein kinase C. Biochem. J. 344, 469–475.PubMedCrossRefGoogle Scholar
  69. 69.
    Ron, D., Napolitano, E. W., Voronova, A., Vasquez, N. J., Roberts, D. N., Calio, B. L., et al. (1999) Direct interaction in T-cells between thetαPKC and the tyrosine kinase p59fyn. J. Biol. Chem. 274, 19,003–19,010.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Gerda Endemann
    • 1
  • Daria Mochly-Rosen
    • 1
  1. 1.Department of Molecular PharmacologyStanford University School of MedicineStanford

Personalised recommendations