Skip to main content

Calmodulin-Tagged Phage and Two-Filter Sandwich Assays for the Identification of Enzymatic Activities

  • Protocol
Book cover Directed Enzyme Evolution

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 230))

  • 1898 Accesses

Abstract

Directed evolution has proven to be a powerful route to enhance the stability, catalytic efficiency, or substrate specificity of enzymes. Large repertoires of enzyme mutants are generated, followed by the isolation of those enzyme variants with the desired catalytic properties. In this chapter, we outline two general methods for the efficient isolation of enzymatic activities from very large repertoires of protein variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atwell, S., and Wells, J. A. (1999) Selection for improved subtiligases by phage display. Proc. Natl. Acad. Sci. USA 96, 9497–9502.

    Article  PubMed  CAS  Google Scholar 

  2. Corey, D. R., Shiau, A. K., Yang, Q., Janowski, B. A., and Craik, C. S. (1993) Trypsin display on the surface of bacteriophage. Gene 128, 129–134.

    Article  PubMed  CAS  Google Scholar 

  3. Jestin, J. L., Kristensen, P., and Winter, G. (1999) A method for the selection of catalytic activity using phage display and proximity coupling. Angew. Chem. Int. Ed. Engl. 38, 1124–1127.

    Article  CAS  Google Scholar 

  4. Pedersen, H., Holder, S., Sutherlin, D. P., Schwitter, U., King, D. S., and Schultz, P. G. (1998) A method for directed evolution and functional cloning of enzymes. Proc. Natl. Acad. Sci. USA 95, 10,523–10,528.

    Article  PubMed  CAS  Google Scholar 

  5. Olsen, M. J., Stephens, D., Griffiths, D., Daugherty, P., Georgiou, G., and Iverson, B. L. (2000) Function-based isolation of novel enzymes from a large library. Nat. Biotechnol. 18, 1071–1074.

    Article  PubMed  CAS  Google Scholar 

  6. Vanwetswinkel, S., Avalle, B., and Fastrez, J. (2000) Selection of beta-lactamases and penicillin binding mutants from a library of phage displayed TEM-1 beta-lactamase randomly mutated in the active site omega-loop. J. Mol. Biol. 295, 527–540.

    Article  PubMed  CAS  Google Scholar 

  7. Soumillion, P., Jespers, L., Bouchet, M., Marchand-Brynaert, J., Sartiaux, P., and Fastrez, J. (1994) Phage display of enzymes and in vitro selection for catalytic activity. Appl. Biochem. Biotechnol. 47, 175–189.

    Article  PubMed  CAS  Google Scholar 

  8. Widersten, M., and Mannervik, B. (1995) Glutathione transferases with novel active sites isolated by phage display from a library of random mutants. J. Mol. Biol. 250, 115–122.

    Article  PubMed  CAS  Google Scholar 

  9. Heinis, C., Huber, A., Demartis, S., et al. (2001) Selection of catalytically active biotin ligase and trypsin mutants by phage display. Protein Eng. 14, 1043–1052.

    Article  PubMed  CAS  Google Scholar 

  10. Demartis, S., Huber, A., Viti, F., et al. (1999) A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage. J. Mol. Biol. 286, 617–633.

    Article  PubMed  CAS  Google Scholar 

  11. de Wildt, R. M., Mundy, C. R., Gorick, B. D., and Tomlinson, I. M. (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. 18, 989–994.

    Article  PubMed  Google Scholar 

  12. Giovannoni, L., Viti, F., Zardi, L., and Neri, D. (2001) Isolation of anti-angiogenesis antibodies from a large combinatorial repertoire by colony filter screening. Nucl. Acid Res. 29, E27.

    Article  CAS  Google Scholar 

  13. Dreher, M. L., Gherardi, E., Skerra, A., and Milstein, C. (1991) Colony assays for antibody fragments expressed in bacteria. J. Immunol. Meth. 139, 197–205.

    Article  CAS  Google Scholar 

  14. Gherardi, E., Pannell, R., and Milstein, C. (1990) A single-step procedure for cloning and selection of antibody-secreting hybridomas. J. Immunol. Meth. 126, 61–68.

    Article  CAS  Google Scholar 

  15. Skerra, A., Dreher, M. L., and Winter, G. (1991) Filter screening of antibody Fab fragments secreted from individual bacterial colonies: specific detection of antigen binding with a two-membrane system. Anal. Biochem. 196, 151–155.

    Article  PubMed  CAS  Google Scholar 

  16. Heinis, C., Melkko, S., Demartis, S., and Neri, D. (2002) Two general methods for the isolation of enzyme activities by colony filter screening. Chem. Biol. 9, 383–390.

    Article  PubMed  CAS  Google Scholar 

  17. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucl. Acid Res. 19, 4133–4137.

    Article  CAS  Google Scholar 

  18. Clackson, T., Hoogenboom, H. R., Griffiths, A. D. and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 624–628.

    Article  PubMed  CAS  Google Scholar 

  19. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  20. Tesar, M., Beckmann, C., Rottgen, P., Haase, B., Faude, U., and Timmis, K. N. (1995) Monoclonal antibody against pIII of filamentous phage: an immunological tool to study pIII fusion protein expression in phage display systems. Immunotechnology 1, 53–64.

    Article  PubMed  CAS  Google Scholar 

  21. Montigiani, S., Neri, G., Neri, P., and Neri, D. (1996) Alanine substitutions in calmodulin-binding peptides result in unexpected affinity enhancement. J. Mol. Biol. 258, 6–13.

    Article  PubMed  CAS  Google Scholar 

  22. Saviranta, P., Haavisto, T., Rappu, P., Karp, M., and Lovgren, T. (1998) In vitro enzymatic biotinylation of recombinant fab fragments through a peptide acceptor tail. Bioconj. Chem. 9, 725–735.

    Article  CAS  Google Scholar 

  23. Schatz, P. J. (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology 11, 1138–1143.

    CAS  Google Scholar 

  24. Grob, P., Baumann, S., Ackermann, M., and Suter, M. (1998) A system for stable indirect immobilization of multimeric recombinant proteins. Immunotechnology 4, 155–163.

    Article  PubMed  CAS  Google Scholar 

  25. Baumann, S., Grob, P., Stuart, F., Pertlik, D., Ackermann, M., and Suter, M. (1998) Indirect immobilization of recombinant proteins to a solid phase using the albumin binding domain of streptococcal protein G and immobilized albumin. J. Immunol. Meth. 221, 95–106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Heinis, C., Bertschinger, J., Neri, D. (2003). Calmodulin-Tagged Phage and Two-Filter Sandwich Assays for the Identification of Enzymatic Activities. In: Arnold, F.H., Georgiou, G. (eds) Directed Enzyme Evolution. Methods in Molecular Biology™, vol 230. Humana Press. https://doi.org/10.1385/1-59259-396-8:313

Download citation

  • DOI: https://doi.org/10.1385/1-59259-396-8:313

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-286-5

  • Online ISBN: 978-1-59259-396-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics