Skip to main content

RACHITT

Gene Family Shuffling by Random Chimeragenesis on Transient Templates

  • Protocol
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 231))

Abstract

Random Chimeragenesis on Transient Templates (RACHITT) has been used to create libraries averaging 12 (1) or even 19 (L. Encell, unpublished) crossovers per gene in a single round of gene family shuffling. RACHITT creates chimeric genes by aligning parental gene “donor” fragments on a full-length DNA template (1). The heteroduplexed top strand fragments are stabilized on the template by a single, long annealing step, taking advantage of full length binding by each fragment, rather than the binding of smaller overlaps, and by carrying out reactions at relatively high ionic strength. Fragments containing unannealed 5′ or 3′-termini are incorporated after flap trimming using the endo and exonucleolytic activities of Taq DNA polymerase and Pfu polymerase, respectively. After gap filling and ligation, the template, which was synthesized with uracils in place of thymidine, is rendered non-amplifiable by uracil-DNA glycosylase (UDG) treatment. Other methods of DNA shuffling by gene fragmentation and reassembly can result in reconstitution of one or all of the parental genes at unacceptably high frequencies in the final shuffled library (24). Libraries with limited diversity owing to low numbers of crossovers can also result (3,5,6). Both of these problems result because the hybridization of perfectly matching top and bottom strand fragments from the same gene are preferred over the heteroduplex hybridizations that lead to crossovers between genes (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coco, W. M., Levinson, W. E., Crist, M. J., et al. (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19, 354–359.

    Article  PubMed  CAS  Google Scholar 

  2. Kikuchi, M., Ohnishi, K., and Harayama, S. (1999) Novel family shuffling methods for the in vitro evolution of enzymes. Gene 236, 159–167.

    Article  PubMed  CAS  Google Scholar 

  3. Moore, G. L., Maranas, C. D., Lutz, S., and Benkovic, S. J. (2001) Predicting crossover generation in DNA shuffling. Proc. Natl. Acad. Sci. USA 98, 3226–3231.

    Article  PubMed  CAS  Google Scholar 

  4. Joern, J. M., Meinhold, P., and Arnold, F. H. (2002) Analysis of shuffled gene libraries. J. Mol. Biol. 316, 643–656.

    Article  PubMed  CAS  Google Scholar 

  5. Kikuchi, M., Ohnishi, K., and Harayama, S. (2000) An effective family shuffling method using single-stranded DNA. Gene 243, 133–137.

    Article  PubMed  CAS  Google Scholar 

  6. Hansson, L. O., Bolton-Grob, R., Massoud, T., and Mannervik, B. (1999) Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling. J. Mol. Biol. 287, 265–276.

    Article  PubMed  CAS  Google Scholar 

  7. Voigt, C. A., Mayo, S. L., Arnold, F. H., and Wang, Z. G. (2001) Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA 98, 3778–3783.

    Article  PubMed  CAS  Google Scholar 

  8. Voigt, C. A., Kauffman, S., and Wang, Z. G. (2001) Rational evolutionary design: the theory of in vitro protein evolution. Adv. Protein Chem. 55, 79–160.

    Article  Google Scholar 

  9. Kurtzman, A. L., Govindarajan, S., Vahle, K., Jones, J. T., Heinrichs, V., and Patten, P. A. (2001) Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Curr. Opin. Biotechnol. 12, 361–370.

    Article  PubMed  CAS  Google Scholar 

  10. Slupphaug, G., Alseth, I., Eftedal, I., Volden, G., and Krokan, H. E. (1993) Low incorporation of dUMP by some thermostable DNA polymerases may limit their use in PCR amplifications. Anal. Biochem. 211, 164–169.

    Article  PubMed  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning, Second Edition. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Coco, W.M. (2003). RACHITT. In: Arnold, F.H., Georgiou, G. (eds) Directed Evolution Library Creation. Methods in Molecular Biology™, vol 231. Humana Press. https://doi.org/10.1385/1-59259-395-X:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-395-X:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-285-8

  • Online ISBN: 978-1-59259-395-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics