Skip to main content

Staggered Extension Process (StEP) In Vitro Recombination

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 231))

Abstract

In vitro polymerase chain reaction (PCR)-based recombination methods are used to shuffle segments from various homologous DNA sequences to produce highly mosaic chimeric sequences. Genetic variations created in the laboratory or existing in nature can be recombined to generate libraries of molecules containing novel combinations of sequence information from any or all of the parent template sequences. Evolutionary protein design approaches, in which libraries created by in vitro recombination methods are coupled with screening (or selection) strategies, have successfully produced variant proteins with a wide array of modified properties including increased drug resistance (1,2), stability (36), binding affinity (6), improved folding and solubility (7), altered or expanded substrate specificity (8,9), and new catalytic activity (10).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stemmer, W. P. (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 81, 10,747–10,751.

    Article  Google Scholar 

  2. Crameri, A., Raillard, S. A., Bermudez, E., and Stemmer, W. P. C. (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291.

    Article  PubMed  CAS  Google Scholar 

  3. Giver, L., Gershenson, A., Freskgard, P. O., and Arnold, F. A. (1998) Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci. USA 95, 12,809–12,813.

    Article  PubMed  CAS  Google Scholar 

  4. Zhao, H. M. and Arnold, F. H. (1999) Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 12, 47–53.

    Article  PubMed  CAS  Google Scholar 

  5. Miyazaki, K., Wintrode, P. L., Grayling, R. A., Rubingh, D. N., and Arnold, F. H. (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J. Mol. Biol. 297, 1015–1026.

    Article  PubMed  CAS  Google Scholar 

  6. Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J., and Pluckthun, A. (2001) Tailoring in vitro evolution for protein affinity or stability. Proc. Natl. Acad. Sci. USA 98, 75–80.

    Article  PubMed  CAS  Google Scholar 

  7. Waldo, G. S., Standish, B. M., Berendzen, J., and Terwilliger, T. C. (1999) Rapid protein-folding assay using green fluorescent protein. Nat. Biotech. 17, 691–695.

    Article  CAS  Google Scholar 

  8. Zhang, J. H., Dawes, G., and Stemmer, W. P. C. (1997) Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504–4509.

    Article  PubMed  CAS  Google Scholar 

  9. Kumamaru, T., Suenaga, H., Mitsuoka, M., Watanabe, T., and Furukawa, K. (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution. Nat. Biotech. 16, 663–666.

    Article  CAS  Google Scholar 

  10. Altamirano, M. M., Blackburn, J. M., Aguayo, C., and Fersht, A. R. (2000) Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold. Nature 403, 617–622.

    Article  PubMed  CAS  Google Scholar 

  11. Stemmer, W. P. C. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao, H., Giver, L., Shao, Z., Affholter, J. A., and Arnold, F. H. (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261.

    Article  PubMed  CAS  Google Scholar 

  13. Shao, Z., Zhao, H., Giver, L., and Arnold, F. H. (1997) Random-priming in vitro recombination: an effective tool for directed evolution. Nucl. Acids Res. 26, 681–683.

    Article  Google Scholar 

  14. Volkov, A. A. and Arnold, F. H. (2000) Methods for in vitro DNA recombination and random chimeragenesis. Meth. Enzymol. 28, 447–456.

    Article  Google Scholar 

  15. Ninkovic, M., Dietrich, R., Aral, G., and Schwienhorst, A. (2001) High-fidelity in vitro recombination using a proofreading polymerase. BioTechniques 30, 530–536.

    PubMed  CAS  Google Scholar 

  16. Cline, J., Braman, J. C., and Hogrefe, H. H. (1996) PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24, 3546–3551.

    Article  PubMed  CAS  Google Scholar 

  17. Judo, M. S. B., Wedel, A. B., and Wilson, C. (1998) Stimulation and suppression of PCR-mediated recombination. Nucleic Acids Res. 26, 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  18. Kong, H., Kucera, R. B., and Jack, W. E. (1993) Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J. Biol. Chem. 268, 1965–1975.

    PubMed  CAS  Google Scholar 

  19. Innis, M. A., Myambo, K. B., Gelfand, D. H., and Brow, M. D. (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Natl. Acad. Sci. USA 85, 436–9440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Aguinaldo, A.M., Arnold, F.H. (2003). Staggered Extension Process (StEP) In Vitro Recombination. In: Arnold, F.H., Georgiou, G. (eds) Directed Evolution Library Creation. Methods in Molecular Biology™, vol 231. Humana Press. https://doi.org/10.1385/1-59259-395-X:105

Download citation

  • DOI: https://doi.org/10.1385/1-59259-395-X:105

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-285-8

  • Online ISBN: 978-1-59259-395-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics