Skip to main content

Cystic Fibrosis

Premature Degradation of Mutant Proteins as a Molecular Disease Mechanism

  • Protocol
Protein Misfolding and Disease

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 232))

Abstract

Cystic fibrosis (CF) is the most common autosomal recessive genetic disorder in the Caucasian population, with 1 out of every 2000 live births affected by this disease (1,2). The symptoms of CF appear in early childhood, and although the duration of the disease depends strongly on the severity of symptoms and availability of treatment options, it generally becomes fatal by the age of 30–40. The hallmark of the disease is the abnormal viscosity of mucous secretions resulting from the altered electrolyte transport across epithelial cell membranes. CF symptoms include pancreatic and gastrointestinal (GI) insufficiency, recurring lung infections, obstruction of sinuses, and male infertility. These pleiotropic symptoms arise as a result of mutations in a single gene, termed cystic fibrosis transmembrane conductance regulator (CFTR) (35). Understanding the mechanisms of biogenesis, folding, and degradation of the CFTR gene product is crucial for unraveling the molecular basis of CF pathogenesis, and will be the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsui, L. C., Rommens, J., Kerem, B., Rozmahel, R., Zielenski, J., Kennedy, D., et al. (1991) Molecular genetics of cystic fibrosis. Adv. Exp. Med. Biol. 290, 9–17; discussion 17–18.

    PubMed  CAS  Google Scholar 

  2. Jaffe, A., and Bush, A. (2001) Cystic fibrosis: review of the decade. Monaldi Arch. Chest. Dis. 56, 240–247.

    PubMed  CAS  Google Scholar 

  3. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  4. Rommens, J. M., Dho, S., Bear, C. E., Kartner, N., Kennedy, D., Riordan, J. R., et al. (1991) cAMP—inducible chloride conductance in mouse fibroblast lines stably expressing the human cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 88, 7500–7504.

    Article  PubMed  CAS  Google Scholar 

  5. Kerem, E. and Kerem, B. (1995) The relationship between genotype and phenotype in cystic fibrosis. Curr. Opin. Pulm. Med. 1, 450–456.

    Article  PubMed  CAS  Google Scholar 

  6. Gadsby, D. C. and Nairn, A. C. (1999) Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol. Rev. 79, S77–S107.

    PubMed  CAS  Google Scholar 

  7. Puchelle, E., Gaillard, D., Ploton, D., Hinnrasky, J., Fuchey, C., Boutterin, M. C., et al. (1992) Differential localization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis airway epithelium. Am. J. Respir. Cell Mol. Biol. 7, 485–491.

    PubMed  CAS  Google Scholar 

  8. Bannykh, S. I., Bannykh, G. I., Fish, K. N., Moyer, B. D., Riordan, J. R., and Balch, W. E. (2000) Traffic pattern of cystic fibrosis transmembrane regulator through the early exocytic pathway. Traffic 1, 852–870.

    Article  PubMed  CAS  Google Scholar 

  9. Kalin, N., Claass, A., Sommer, M., Puchelle, E., and Tummler, B. (1999) DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J. Clin. Invest. 103, 1379–1389.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.

    Article  PubMed  CAS  Google Scholar 

  11. Lukacs, G. L., Mohamed, A., Kartner, N., Chang, X. B., Riordan, J. R., and Grinstein, S. (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 13, 6076–6086.

    PubMed  CAS  Google Scholar 

  12. Ward, C. L. and Kopito, R. R. (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269, 25,710–25,718.

    PubMed  CAS  Google Scholar 

  13. Denning, G. M., Anderson, M. P., Amara, J. F., Marshall, J., Smith, A. E. and Welsh, M. J. (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761–764.

    Article  PubMed  CAS  Google Scholar 

  14. Drumm, M. L., Wilkinson, D. J., Smit, L. S., Worrell, R. T., Strong, T. V., Frizzell, R. A., et al. (1991) Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science 254, 1797–1799.

    Article  PubMed  CAS  Google Scholar 

  15. Yang, Y., Janich, S., Cohn, J. A., and Wilson, J. M. (1993) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by Hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. USA 90, 9480–9484.

    Article  PubMed  CAS  Google Scholar 

  16. Pind, S., Riordan, J. R., and Williams, D. B. (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 12,784–12,788.

    PubMed  CAS  Google Scholar 

  17. Loo, M. A., Jensen, T. J., Cui, L., Hou, Y., Chang, X. B., and Riordan, J. R. (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J. 17, 6879–6887.

    Article  PubMed  CAS  Google Scholar 

  18. Meacham, G. C., Lu, Z., King, S., Sorscher, E., Tousson, A., and Cyr, D. M. (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492–1505.

    Article  PubMed  CAS  Google Scholar 

  19. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M., and Cyr, D. M. (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 3, 100–105.

    Article  PubMed  CAS  Google Scholar 

  20. Qu, B. H., Strickland, E. H., and Thomas, P. J. (1997) Localization and suppression of a kinetic defect in cystic fibrosis transmembrane conductance regulator folding. J. Biol. Chem. 272, 15,739–15,744.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, F., Kartner, N., and Lukacs, G. L. (1998) Limited proteolysis as a probe for arrested conformational maturation of delta F508 CFTR. Nat. Struct. Biol. 5, 180–183.

    Article  PubMed  CAS  Google Scholar 

  22. Pasyk, E. A. and Foskett, J. K. (1995) Mutant (delta F508) cystic fibrosis transmembrane conductance regulator Cl-channel is functional when retained in endoplasmic reticulum of mammalian cells. J. Biol. Chem. 270, 12,347–12,350.

    Article  PubMed  CAS  Google Scholar 

  23. Choo-Kang, L. R. and Zeitlin, P. L. (2000) Type I, II, III, IV, and V cystic fibrosis transmembrane conductance regulator defects and opportunities for therapy. Curr. Opin. Pulm. Med. 6, 521–529.

    Article  PubMed  CAS  Google Scholar 

  24. Ward, C. L., Omura, S., and Kopito, R. R. (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127.

    Article  PubMed  CAS  Google Scholar 

  25. Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135.

    Article  PubMed  CAS  Google Scholar 

  26. Sato, S., Ward, C. L., and Kopito, R. R. (1998) Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro. J. Biol. Chem. 273, 7189–7192.

    Article  PubMed  CAS  Google Scholar 

  27. Xiong, X., Chong, E., and Skach, W. R. (1999) Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J. Biol. Chem. 274, 2616–2624.

    Article  PubMed  CAS  Google Scholar 

  28. Oberdorf, J., Carlson, E. J., and Skach, W. R. (2001) Redundancy of mammalian proteasome beta subunit function during endoplasmic reticulum associated degradation. Biochemistry 40, 13,397–13,405.

    Article  PubMed  CAS  Google Scholar 

  29. Bebok, Z., Mazzochi, C., King, S. A., Hong, J. S., and Sorscher, E. J. (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J. Biol. Chem. 273, 29,873–29,878.

    Article  PubMed  CAS  Google Scholar 

  30. Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  31. Gelman, M. S., Kannegaard, E. S., and Kopito, R. R. (2002) A principal role for the proteasome in ER-associated degradation of misfolded intracellular CFTR. J. Biol Chem. 77, 11,709–11,714.

    Article  Google Scholar 

  32. Bordallo, J., Plemper, R. K., Finger, A., and Wolf, D. H. (1998) Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222.

    PubMed  CAS  Google Scholar 

  33. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A., and Hampton, R. Y. (2001) Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 3, 24–29.

    Article  PubMed  CAS  Google Scholar 

  34. Swanson, R., Locher, M., and Hochstrasser, M. (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev. 15, 2660–2674.

    Article  PubMed  CAS  Google Scholar 

  35. Sato, S., Ward, C. L., Krouse, M. E., Wine, J. J., and Kopito, R. R. (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638.

    Article  PubMed  CAS  Google Scholar 

  36. Brown, C. R., Hong-Brown, L. Q., and Welch, W. J. (1997) Correcting temperature-sensitive protein folding defects. J. Clin. Invest. 99, 1432–1444.

    Article  PubMed  CAS  Google Scholar 

  37. Brown, C. R., Hong-Brown, L. Q., Biwersi, J., Verkman, A. S., and Welch, W. J. (1996) Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1, 117–125.

    Article  PubMed  CAS  Google Scholar 

  38. Morello, J. P., Petaja-Repo, U. E., Bichet, D. G., and Bouvier, M. (2000) Pharmacological chaperones: a new twist on receptor folding. Trends Pharmacol. Sci. 21, 466–469.

    Article  PubMed  CAS  Google Scholar 

  39. Loo, T. W. and Clarke, D. M. (1997) Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. J. Biol. Chem. 272, 709–712.

    Article  PubMed  CAS  Google Scholar 

  40. Morello, J. P., Salahpour, A., Laperriere, A., Bernier, V., Arthus, M. F., Lonergan, M., et al. (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895.

    Article  PubMed  CAS  Google Scholar 

  41. Jiang, C., Fang, S. L., Xiao, Y. F., O’Connor, S. P., Nadler, S. G., Lee, D. W., et al. (1998) Partial restoration of cAMP-stimulated CFTR chloride channel activity in DeltaF508 cells by deoxyspergualin. Am. J. Physiol. 275, C171–C178.

    PubMed  CAS  Google Scholar 

  42. Andersson, C. and Roomans, G. M. (2000) Activation of deltaF508 CFTR in a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate, genistein and CPX. Eur. Respir. J. 15, 937–941.

    Article  PubMed  CAS  Google Scholar 

  43. Arispe, N., Ma, J., Jacobson, K. A., and Pollard, H. B. (1998) Direct activation of cystic fibrosis transmembrane conductance regulator channels by 8-cyclopentyl-1,3-dipropylxanthine (CPX) and 1,3-diallyl-8-cyclohexylxanthine (DAX). J. Biol. Chem. 273, 5727–5734.

    Article  PubMed  CAS  Google Scholar 

  44. Zeitlin, P. L. (2000) Pharmacologic restoration of delta F508 CFTR-mediated chloride current. Kidney Int. 57, 832–837.

    Article  PubMed  CAS  Google Scholar 

  45. Maitra, R., Shaw, C. M., Stanton, B. A., and Hamilton, J. W. (2001) Increased functional cell surface expression of CFTR and DeltaF508-CFTR by the anthracycline doxorubicin. Am. J. Physiol. Cell Physiol. 280, C1031–1037.

    PubMed  CAS  Google Scholar 

  46. Dormer, R. L., Derand, R., McNeilly, C. M., Mettey, Y., Bulteau-Pignoux, L., Metaye, T., et al. (2001) Correction of delF508-CFTR activity with benzo(c)quinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells. J. Cell Sci. 114, 4073–4081.

    PubMed  CAS  Google Scholar 

  47. Heda, G. D. and Marino, C. R. (2000) Surface expression of the cystic fibrosis transmembrane conductance regulator mutant DeltaF508 is markedly upregulated by combination treatment with sodium butyrate and low temperature. Biochem. Biophys. Res. Commun. 271, 659–664.

    Article  PubMed  CAS  Google Scholar 

  48. Egan, M. E., Glockner-Pagel, J., Ambrose, C. A., Cahill, P. A., Pappoe, L., Balamuth, N., et al. (2002) Calcium-pump inhibitors induce functional surface expression of DeltaF508-CFTR protein in cystic fibrosis epithelial cells. Nat. Med. 8, 485–492.

    Article  PubMed  CAS  Google Scholar 

  49. Sharma, M., Benharouga, M., Hu, W., and Lukacs, G. L. (2001) Conformational and temperature-sensitive stability defects of the delta F508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J. Biol. Chem. 276, 8942–8950.

    Article  PubMed  CAS  Google Scholar 

  50. Heda, G. D., Tanwani, M., and Marino, C. R. (2001) The Delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am. J. Physiol. Cell Physiol. 280, C166–C174.

    PubMed  CAS  Google Scholar 

  51. Galietta, L. V., Jayaraman, S., and Verkman, A. S. (2001) Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am. J. Physiol. Cell Physiol. 281, C1734–C1742.

    PubMed  CAS  Google Scholar 

  52. Galietta, L. J., Springsteel, M. F., Eda, M., Niedzinski, E. J., By, K., Haddadin, M. J., et al. (2001) Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. J. Biol. Chem. 276, 19,723–19,728.

    Article  PubMed  CAS  Google Scholar 

  53. Moyer, B. D., Loffing, J., Schwiebert, E. M., Loffing-Cueni, D., Halpin, P. A., Karlson, K. H., et al. (1998) Membrane trafficking of the cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator, tagged with green fluorescent protein in madin-darby canine kidney cells. J. Biol. Chem. 273, 21,759–21,768.

    Article  PubMed  CAS  Google Scholar 

  54. Howard, M., DuVall, M. D., Devor, D. C., Dong, J. Y., Henze, K., and Frizzell, R. A. (1995) Epitope tagging permits cell surface detection of functional CFTR. Am. J. Physiol. 269, C1565–C1576.

    PubMed  CAS  Google Scholar 

  55. Schultz, B. D., Takahashi, A., Liu, C., Frizzell, R. A., and Howard, M. (1997) FLAG epitope positioned in an external loop preserves normal biophysical properties of CFTR. Am. J. Physiol. 273, C2080–C2089.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gelman, M.S., Kopito, R.R. (2003). Cystic Fibrosis. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Disease. Methods in Molecular Biology™, vol 232. Humana Press. https://doi.org/10.1385/1-59259-394-1:27

Download citation

  • DOI: https://doi.org/10.1385/1-59259-394-1:27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-065-6

  • Online ISBN: 978-1-59259-394-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics