Skip to main content

Characterization of Overexpressed Mutant Proteins in Mammalian Cells

  • Protocol
  • 1264 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 232))

Abstract

Overexpression and characterization of mutant proteins in mammalian cells is of crucial importance in order to understand the disease-causing nature of mutant proteins in human diseases. Much of the present knowledge of the mechanisms behind disease-causing proteins comes from cellular analysis of the plethora of naturally occurring mutations. Functional testing of these gene variants depends on efficient gene transfer to mammalian cells. A wide variety of methods for transfection of tissue-culture cells has been applied. The two common methods for transient transfection of adherent cells, chemical treatment with calcium-phosphate and lipid-based procedures, have all been used and will be described here. For a detailed treatment of the subject, including stable transfection and viral-mediated gene transfer, the reader is referred to refs. 16.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning, A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  2. Kay, M. A., Glorioso, J. C., and Naldini, L. (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33–40.

    Article  PubMed  CAS  Google Scholar 

  3. Boussif, O., Lezoualc’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  4. Yanez, R. J. and Porter, A. C. (1998) Therapeutic gene targeting. Gene Ther. 5, 149–159.

    Article  PubMed  CAS  Google Scholar 

  5. Rubanyi, G. M. (2001) The future of human gene therapy. Mol. Aspects Med. 22, 113–142.

    Article  PubMed  CAS  Google Scholar 

  6. Crystal, R. G. (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270, 404–410.

    Article  PubMed  CAS  Google Scholar 

  7. Kain, S. R., Adams, M., Kondepudi, A., Yang, T. T., Ward, W. W., and Kitts, P. (1995) Green fluorescent protein as a reporter of gene expression and protein localization. BioTechniques 19, 650–655.

    PubMed  CAS  Google Scholar 

  8. Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.

    Article  PubMed  CAS  Google Scholar 

  9. Hampton, R. Y., Koning, A., Wright, R., and Rine, J. (1996) In vivo examination of membrane protein localization and degradation with green fluorescent protein. Proc. Natl. Acad. Sci. USA 93, 828–833.

    Article  PubMed  CAS  Google Scholar 

  10. Loimas, S., Wahlfors, J., and Janne, J. (1998) Herpes simplex virus thymidine kinase-green fluorescent protein fusion gene: new tool for gene transfer studies and gene therapy. BioTechniques 24, 614–618.

    PubMed  CAS  Google Scholar 

  11. Scholz, G. M., Cartledge, K., and Hall, N. E. (2001) Identification and characterization of Harc, a novel Hsp90-associating relative of Cdc37. J. Biol. Chem. 276, 30,971–30,979.

    Article  PubMed  CAS  Google Scholar 

  12. Perrin, M. H., Fischer, W. H., Kunitake, K. S., Craig, A. G., Koerber, S. C., Cervini, L. A., et al. (2001) Expression, purification, and characterization of a soluble form of the first extracellular domain of the human type 1 corticotropin releasing factor receptor. J. Biol. Chem. 276, 31,528–31,534.

    Article  PubMed  CAS  Google Scholar 

  13. Crawford, B. E., Olson, S. K., Esko, J. D., and Pinhal, M. A. (2001) Cloning, Golgi localization, and enzyme activity of the full-length heparin/heparan sulfate-glucuronic acid C5-epimerase. J. Biol. Chem. 276, 21,538–21,543.

    Article  PubMed  CAS  Google Scholar 

  14. Lippincott-Schwartz, J. and Zaal, K. J. (2000) Cell cycle maintenance and biogenesis of the Golgi complex. Histochem. Cell Biol. 114, 93–103.

    PubMed  CAS  Google Scholar 

  15. Wahlfors, J., Loimas, S., Pasanen, T., and Hakkarainen, T. (2001) Green fluorescent protein (GFP) fusion constructs in gene therapy research. Histochem. Cell Biol. 115, 59–65.

    PubMed  CAS  Google Scholar 

  16. Corydon, T. J., Bross, P., Jensen, T. G., Corydon, M. J., Lund, T. B., Jensen, U. B., et al. (1998) Rapid degradation of short-chain acyl-CoA dehydrogenase (SCAD) with temperature-sensitive folding defects occurs after import into mitochondria. J. Biol. Chem. 273, 13,065–13,071.

    Article  PubMed  CAS  Google Scholar 

  17. Corydon, T. J., Wilsbech, M., Jespersgaard, C., Andresen, B. S., Borglum, A. D., Pedersen, S., et al. (2000) Human and mouse mitochondrial orthologs of bacterial ClpX. Mamm. Genome 11, 899–905.

    Article  PubMed  CAS  Google Scholar 

  18. Jensen, H. K., Holst, H., Jensen, L. G., Jorgensen, M. M., Andreasen, P. H., Jensen, T. G., et al. (1997) A common W556S mutation in the LDL receptor gene of Danish patients with familial hypercholesterolemia encodes a transport-defective protein. Atherosclerosis 131, 67–72.

    Article  PubMed  CAS  Google Scholar 

  19. Lehrman, M. A., Schneider, W. J., Brown, M. S., Davis, C. G., Elhammer, A., Russell, D. W., and Goldstein, J. L. (1987) The Lebanese allele at the low density lipoprotein receptor locus. Nonsense mutation produces truncated receptor that is retained in endoplasmic reticulum. J. Biol. Chem. 262, 401–410.

    PubMed  CAS  Google Scholar 

  20. Holst, H., Dagnæs-Hansen, F., Corydon, T. J., Andresen, P. H., Jorgensen, M. M., Kolvraa, S., et al. (2001) Hydrodynamic gene transfer of LDL-receptor GFP fusion proteins to mouse liver for the characterization of LDL-receptor mutations. Eur. J. Hum. Genet. 9, 815–822.

    Article  PubMed  CAS  Google Scholar 

  21. Gao, X., and Huang, L. (1991) A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Commun. 179, 280–285.

    Article  PubMed  CAS  Google Scholar 

  22. Beinert, H. (1963) Acyl-CoA dehydrogenases. Enzymes 7, 447–476.

    CAS  Google Scholar 

  23. Matsubara, Y., Indo, Y., Naito, E., Ozasa, H., Glassberg, R., Vockley, J., et al. (1989) Molecular cloning and nucleotide sequence of cDNAs encoding the precursors of rat long chain acyl-coenzyme A, short chain acyl-coenzyme A, and isovaleryl-coenzyme A dehydrogenases. Sequence homology of four enzymes of the acyl-CoA dehydrogenase family. J. Biol. Chem. 264, 16,321–16,331.

    PubMed  CAS  Google Scholar 

  24. Amendt, B. A., Greene, C., Sweetman, L., Cloherty, J., Shih, V., Moon, A., et al. (1987) Short-chain acyl-coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients. J. Clin. Invest. 79, 1303–1309.

    Article  PubMed  CAS  Google Scholar 

  25. Gregersen, N., Winter, V. S., Corydon, M. J., Corydon, T. J., Rinaldo, P., Ribes, A., et al. (1998) Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C—T,> is present at an unexpectedly high frequency in the general population, as was the case for 625G—>A, together conferring susceptibility to ethylmalonic aciduria. Hum. Mol. Genet. 7, 619–627.

    Article  PubMed  CAS  Google Scholar 

  26. Corydon, M. J., Vockley, J., Rinaldo, P., Rhead, W. J., Kjeldsen, M., Winter, V., et al. (2001) Role of common gene variations in the molecular pathogenesis of short-chain acyl-CoA dehydrogenase deficiency. Pediatr. Res. 49, 18–23.

    Article  PubMed  CAS  Google Scholar 

  27. Naito, E., Ozasa, H., Ikeda, Y., and Tanaka, K. (1989) Molecular cloning and nucleotide sequence of complementary DNAs encoding human short chain acylcoenzyme A dehydrogenase and the study of the molecular basis of human short chain acyl-coenzyme A dehydrogenase deficiency. J. Clin. Invest. 83, 1605–1613.

    Article  PubMed  CAS  Google Scholar 

  28. Goldstein, J. L., Hobbs, H. H., and Brown, M. S. (1995) Familial hypercholester-olemia, in Metabolic and Molecular Basis of Inherited Diseases, vol. 2, 7th ed. (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 1981–2030.

    Google Scholar 

  29. Gottesman, S., Clark, W. P., de Crecy Lagard, V., and Maurizi, M. R. (1993) ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J. Biol. Chem. 268, 22618–22626.

    Google Scholar 

  30. Zhang, G., Budker, V., and Wolff, J. A. (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther. 10, 1735–1737.

    Article  PubMed  CAS  Google Scholar 

  31. Liu, F., Song, Y., and Liu, D. (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266.

    Article  PubMed  CAS  Google Scholar 

  32. Lehman, T. C., Hale, D. E., Bhala, A., and Thorpe, C. (1990) An acyl-coenzyme A dehydrogenase assay utilizing the ferriceniumion. Anal. Biochem. 186, 280–284.

    Article  PubMed  CAS  Google Scholar 

  33. Corydon, T. J., Bross, P., Holst, H. U., Neve, S., Kristiansen, K., Gregersen, N., and Bolund, L. (1998) A human homologue of Escherichia coli ClpP caseinolytic protease: recombinant expression, intracellular processing and subcellular localization. Biochem. J. 331, 309–316.

    PubMed  CAS  Google Scholar 

  34. Jorgensen, M. M., Jensen, O. N., Holst, H. U., Hansen, J. J., Corydon, T. J., Bross, P., et al. (2000) Grp78 is involved in retention of mutant low density lipoprotein receptor protein in the endoplasmic reticulum. J. Biol. Chem. 275, 33,861–33,868.

    Article  PubMed  CAS  Google Scholar 

  35. Graham, F. L. and van der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.

    Article  PubMed  CAS  Google Scholar 

  36. Ritco-Vonsovici, M. and Willison, K. R. (2000) Defining the eukaryotic cytosolic chaperonin-binding sites in human tubulins. J. Mol. Biol. 304, 81–98.

    Article  PubMed  CAS  Google Scholar 

  37. Corydon, M. J., Gregersen, N., Lehnert, W., Ribes, A., Rinaldo, P., Kmoch, S., et al. (1996) Ethylmalonic aciduria is associated with an amino acid variant of short-chain acyl-Coenzyme A dehydrogenase. Pediatr. Res. 39, 1059–1066.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Corydon, T.J. (2003). Characterization of Overexpressed Mutant Proteins in Mammalian Cells. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Disease. Methods in Molecular Biology™, vol 232. Humana Press. https://doi.org/10.1385/1-59259-394-1:183

Download citation

  • DOI: https://doi.org/10.1385/1-59259-394-1:183

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-065-6

  • Online ISBN: 978-1-59259-394-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics