Investigation of Folding and Degradation of Mutant Proteins Synthesized in Semipermeabilized Cells

  • Cornelia M. Wilson
  • Neil J. Bulleid
Part of the Methods in Molecular Biology™ book series (MIMB, volume 232)

Abstract

The endoplasmic reticulum (ER) is the site where most secretory proteins acquire their native conformation and gain access to the secretory pathway, and the cell surface. Proteins entering the secretory pathway are translocated across or inserted into the ER membrane either co-translationally or post-translationally through an aqueous pore in the ER membrane called the translocon (1). The emerging polypeptide chains may then interact with molecular chaperones to ensure their correct folding and assembly (2). Covalent modification of the polypeptide chain by the formation of native inter- and intrachain disulphide bonds stabilizes folded protein domains and cross-links subunits associated with oligomeric complexes. The ability of the ER-molecular chaperones and folding enzymes to recognize and bind to non-native substrates retains these proteins within the ER until they have reached their native state (3). The dissociation of the fully folded substrates from the ER chaperones facilitates the transport process, resulting in exit of the native protein from the ER. Therefore, the “quality-control” system of the ER allows export of only correctly folded and assembled proteins.

Keywords

Codon DMSO Aldehyde Electrophoresis CaCl2 

References

  1. 1.
    Crowley, K. S., Liao, S., Worrell, V. E., Reinhart, G. D., and Johnson A. E. (1994) Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461–471.PubMedCrossRefGoogle Scholar
  2. 2.
    Bergeron, J. J., Brenner, M. B., Thomas, D. Y., and Williams, D. B. (1994) Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19, 124–128.PubMedCrossRefGoogle Scholar
  3. 3.
    Hammond, C. and Helenius, A. (1995) Quality control in the secretory pathway. Curr. Opin. Cell Biol. 7, 523–529.PubMedCrossRefGoogle Scholar
  4. 4.
    Knittler, M. R., Dirks, S., and Haas, I. G. (1995) Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 92, 1764–1768.PubMedCrossRefGoogle Scholar
  5. 5.
    Vidair, C. A., Huang, R. N., and Doxsey, S. J. (1996) Heat shock causes protein aggregation and reduced protein solubility at the centrosome and other cytoplasmic locations. Int. J. Hyperthermia 12, 681–695.PubMedCrossRefGoogle Scholar
  6. 6.
    Buchner, J. (1996) Supervising the fold: functional principles of molecular chaperones. FASEB J. 10, 10–19.PubMedGoogle Scholar
  7. 7.
    Wiertz, E. J., Jones, T. R., Sun, L., Bogyo, M., Geuze, H. J., and Ploegh, H. L. (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779.PubMedCrossRefGoogle Scholar
  8. 8.
    Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A., and Masucci, M. G. (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl. Acad. Sci. USA 94, 12,616–12,621.PubMedCrossRefGoogle Scholar
  9. 9.
    Bonifacino, J. S., Suzuki, C. K., Lippincott Schwartz, J., Weissman, A. M., and Klausner, R. D. (1989) Pre-Golgi degradation of newly synthesized T-cell antigen receptor chains: intrinsic sensitivity and the role of subunit assembly. J. Cell Biol. 109, 73–83.Google Scholar
  10. 10.
    Plutner, H., Davidson, H. W., Saraste, J., and Balch, W. E. (1992) Morphological analysis of protein transport from the ER to Golgi membranes in digitoninpermeabilised cells: role of the p58 containing compartment. J. Cell Biol. 119, 1097–1116.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson, R., Allen, A. J., Oliver, J., Brookman, J. L., High, S., and Bulleid, N. J. (1995) The translocation, folding, assembly and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized mammalian cells. Biochem. J. 307, 679–687.PubMedGoogle Scholar
  12. 12.
    Wilson, C. M., Farmery, M. R., and Bulleid, N. J. (2000) Pivotal role of calnexin and mannose trimming in regulating the endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain. J. Biol. Chem. 275, 21,224–21,232.PubMedCrossRefGoogle Scholar
  13. 13.
    Gurevich, V. V., Pokrovskaya, I. D., Obukhova, T. A., and Zozulya, S. A. (1991) Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal. Biochem. 195, 207–213.PubMedCrossRefGoogle Scholar
  14. 14.
    Sadasivan, B. K., Cariappa, A., Waneck, G. L., and Cresswell, P. (1995) Assembly, peptide loading, and transport of MHC class I molecules in a calnexin-negative cell line. Cold Spring Harb. Symp. Quant. Biol. 60, 267–275.PubMedGoogle Scholar
  15. 15.
    Barnstable, C. J., Bodmer, W. F., Brown, G., Galfre, G., Milstein, C., Williams, A. F., and Ziegler, A. (1978) Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell 14, 9–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Farmery, M. R., Allen, S., Allen, A. J., and Bulleid, N. J. (2000) The role of ERp57 in disulfide bond formation during the assembly of major histocompatibility complex class I in a synchronized semipermeabilized cell translation system. J. Biol. Chem. 275, 14,933–14,938.PubMedCrossRefGoogle Scholar
  17. 17.
    Stam, N. J., Spits, H., and Ploegh, H. L. (1986) Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J. Immunol. 137, 2299–2306.PubMedGoogle Scholar
  18. 18.
    Werner, E. D., Brodsky, J. L., and McCracken, A. A. (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc. Natl. Acad. Sci. USA 93, 13,797–13,801.PubMedCrossRefGoogle Scholar
  19. 19.
    McCracken, A. A. and Brodsky, J. L. (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298.PubMedCrossRefGoogle Scholar
  20. 20.
    Pilon, M., Schekman, R., and Romisch, K. (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540–4548.PubMedCrossRefGoogle Scholar
  21. 21.
    Haas, A. L., and Rose, I. A. (1981) Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: role of hemin in regulating ubiquitin conjugate degradation. Proc. Natl. Acad. Sci. USA 78, 6845–6848.PubMedCrossRefGoogle Scholar
  22. 22.
    Pelham, H. R. B. and Jackson, R. J. (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67, 247–256.PubMedCrossRefGoogle Scholar
  23. 23.
    Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., et al. (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771.PubMedCrossRefGoogle Scholar
  24. 24.
    Lowe, J., Stock, D., Jap, R., Zwickl, P., Baumeister, W., and and Huber, R. (1995) Crystal-structure of the 20S proteasome from the archaeon T. acidoophilum at 3.4 angstrom resolution. Science 268, 533–539.PubMedCrossRefGoogle Scholar
  25. 25.
    Dick, L. R., Criukshank, A. A., Destree, A. T., Grenier, L., McCormack, T. A., Melandri, F. D., et al. (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 272, 182–188.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Cornelia M. Wilson
    • 1
  • Neil J. Bulleid
    • 1
  1. 1.School of Biological SciencesUniversity of ManchesterManchesterUK

Personalised recommendations