Skip to main content

The Choice of a Suitable Lentivirus Vector

Transcriptional Targeting

  • Protocol
  • 1205 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 229))

Abstract

Human immunodeficiency virus (HIV)-derived lentiviral vectors can integrate into the genome of dividing and nondividing cells, in vitro as well as in vivo (reviewed in refs. 13). Lentiviral vectors are particularly efficient in transducing multipotent stem cells, such as hematopoietic stem cells (HSC), without compromising their self-renewing and organ repopulation capacity upon transplantation in vivo (46). This is a crucial advantage over oncoretroviral vectors derived from the Moloney murine leukemia virus (MoMLV) since transplantation of genetically modified stem cells (hematopoietic, neural, or epidermal) is a potential therapy for a variety of genetic and acquired disorders, including diabetes, multiple sclerosis, cancer, and acquired immunodeficiency syndrome (AIDS). Several years of research have drastically improved both design and packaging of lentiviral vectors, minimized the use of HIV structural and regulatory sequences in both the transfer and the packaging constructs and have virtually abolished the safety concerns originally raised by the idea of transducing human cells with a derivative of HIV (reviewed in ref. 3). These vectors are now a very promising alternative to transduce transplantable stem cells ex vivo and such postmitotic tissues as the central nervous system (CNS) or liver in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Naldini, L. and Verma, I. M. (1999) Lentiviral vectors, in The Development of Gene Therapy (Friedmann, T., ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 47–60.

    Google Scholar 

  2. Trono, D. (2000) Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther. 7, 20–23.

    Article  PubMed  CAS  Google Scholar 

  3. Vigna, E. and Naldini, L. (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J. Gene Med. 2, 308–316.

    Article  PubMed  CAS  Google Scholar 

  4. Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M., and Torbett, B. E. (1999) Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682–686.

    Article  PubMed  CAS  Google Scholar 

  5. Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M., and Naldini, L. (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217–222.

    Article  PubMed  CAS  Google Scholar 

  6. Woods, N. B., Fahlman, C., Mikkola, H., et al. (2000) Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells. Blood 96, 3725–3733.

    PubMed  CAS  Google Scholar 

  7. Larochelle, A., Peng, K. W., and Russell, S. J. (2002) Lentiviral vector targeting. Curr. Top Microbiol. Immunol. 261, 143–163.

    PubMed  CAS  Google Scholar 

  8. Miller, N. and Whelan, J. (1997) Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Hum. Gene Ther. 8, 803–815.

    Article  PubMed  CAS  Google Scholar 

  9. Emerman, M. and Temin, H. M. (1984) Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39, 449–467.

    Article  PubMed  CAS  Google Scholar 

  10. Emerman, M. and Temin, H. M. (1986) Quantitative analysis of gene suppression in integrated retrovirus vectors. Mol. Cell. Biol. 6, 792–800.

    PubMed  CAS  Google Scholar 

  11. Yu, S., von Ruden, T., Kantoff, P. W., et al. (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. USA 83, 3194–3198.

    Article  PubMed  CAS  Google Scholar 

  12. Yee, J. K., Moores, J. C., Jolly, D. J., Wolff, J. A., Respess, J. G., and Friedmann, T. (1987) Gene expression from transcriptionally disabled retroviral vectors. Proc. Natl. Acad. Sci. USA 84, 5197–5201.

    Article  PubMed  CAS  Google Scholar 

  13. Naffakh, N., Pinset, C., Montarras, D., et al. (1996) Long-term secretion of therapeutic proteins from genetically modified skeletal muscles. Hum. Gene Ther. 7, 11–21.

    Article  PubMed  CAS  Google Scholar 

  14. Karlsson, S., Papayannopoulou, T., Schweiger, S. G., Stamatoyannopoulos, G., and Nienhuis, A. W. (1987) Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein. Proc. Natl. Acad. Sci. USA 84, 2411–2415.

    Article  PubMed  CAS  Google Scholar 

  15. Hantzopoulos, P. A., Sullenger, B. A., Ungers, G., and Gilboa, E. (1989) Improved gene expression upon transfer of the adenosine deaminase minigene outside the transcriptional unit of a retroviral vector. Proc. Natl. Acad. Sci. USA 86, 3519–3523.

    Article  PubMed  CAS  Google Scholar 

  16. Ferrari, G., Salvatori, G., Rossi, C., Cossu, G., and Mavilio, F. (1995) A retroviral vector containing a muscle-specific enhancer drives gene expression only in differentiated muscle fibers. Hum. Gene Ther. 6, 733–742.

    Article  PubMed  CAS  Google Scholar 

  17. Grande, A., Piovani, B., Aiuti, A., Ottolenghi, S., Mavilio, F., and Ferrari, G. (1999) Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells. Blood 93, 3276–3285.

    PubMed  CAS  Google Scholar 

  18. Zufferey, R., Dull, T., Mandel, R. J., et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880.

    PubMed  CAS  Google Scholar 

  19. Dull, T., Zufferey, R., Kelly, M., et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471.

    PubMed  CAS  Google Scholar 

  20. Richard, E., Mendez, M., Mazurier, F., et al. (2001) Gene therapy of a mouse model of protoporphyria with a self-inactivating erythroid-specific lentiviral vector without preselection. Mol. Ther. 4, 331–338.

    Article  PubMed  CAS  Google Scholar 

  21. Moreau-Gaudry, F., Xia, P., Jiang, G., et al. (2001) High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 98, 2664–2672.

    Article  PubMed  CAS  Google Scholar 

  22. Cui, Y., Golob, J., Kelleher, E., Ye, Z., Pardoll, D., and Cheng, L. (2002) Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 99, 399–408.

    Article  PubMed  CAS  Google Scholar 

  23. Kafri, T., van Praag, H., Gage, F. H., and Verma, I. M. (2000) Lentiviral vectors: regulated gene expression. Mol. Ther. 1, 516–521.

    Article  PubMed  CAS  Google Scholar 

  24. Vigna, E., Cavalieri, S., Ailles, L., et al. (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol. Ther. 5, 252–261.

    Article  PubMed  CAS  Google Scholar 

  25. May, C., Rivella, S., Callegari, J., et al. (2000) Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406, 82–86.

    Article  PubMed  CAS  Google Scholar 

  26. May, C., Rivella, S., Chadburn, A., and Sadelain, M. (2002) Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene. Blood 99, 1902–1908.

    Article  PubMed  CAS  Google Scholar 

  27. Lotti, F., Menguzzato, E., Rossi, C., et al. (2002) Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement. J. Virol. 76, 3996–4007.

    Article  PubMed  CAS  Google Scholar 

  28. Zufferey, R., Donello, J. E., Trono, D., and Hope, T. J. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892.

    PubMed  CAS  Google Scholar 

  29. Klages, N., Zufferey, R., and Trono, D. (2000) A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol. Ther. 2, 170–176.

    Article  PubMed  CAS  Google Scholar 

  30. Challita, P. M. and Kohn, D. B. (1994) Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc. Nat. Acad. Sci. USA 91, 2567–2571.

    Article  PubMed  CAS  Google Scholar 

  31. Reik, A., Telling, A., Zitnik, G., Cimbora, D., Epner, E., and Groudine, M. (1998) The locus control region is necessary for gene expression in the human β-globin locus but not the maintainance of an open chromatin structure in erythroid cells. Mol. Cell. Biol. 18, 5992–6000.

    PubMed  CAS  Google Scholar 

  32. Epner, E., Reik, A., Cimbora, D., et al. (1998) The β-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse β-globin locus. Mol. Cell 2, 447–455.

    Article  PubMed  CAS  Google Scholar 

  33. Park, F. and Kay, M. A. (2001) Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol. Ther. 4, 164–173.

    Article  PubMed  CAS  Google Scholar 

  34. Dang, Q., Auten, J., and Plavec, I. (2000) Human beta interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy number-dependent expression to a retroviral vector. J. Virol. 74, 2671–2678.

    Article  PubMed  CAS  Google Scholar 

  35. Austin, T. W., Salimi, S., Veres, G., et al. (2000) Long-term multilineage expression in peripheral blood from a Moloney murine leukemia virus vector after serial transplantation of transduced bone marrow cells. Blood 95, 829–836.

    PubMed  CAS  Google Scholar 

  36. Agarwal, M., Austin, T. W., Morel, F., Chen, J., Bohnlein, E., and Plavec, I. (1998) Scaffold attachment region-mediated enhancement of retroviral vector expression in primary T cells. J. Virol. 72, 3720–3728.

    PubMed  CAS  Google Scholar 

  37. Orkin, S. H. (1995) Regulation of globin gene expression in erythroid cells. Eur. J. Biochem. 231, 271–281.

    Article  PubMed  CAS  Google Scholar 

  38. Martin, D. I., Fiering, S., and Groudine, M. (1996) Regulation of beta-globin gene expression: straightening out the locus. Curr. Opin. Gen. Dev. 6, 488–495.

    Article  CAS  Google Scholar 

  39. Coffin, J. M., Huges, S. H., and Varmus, H. E. (1997) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  40. Junker, U., Bohnlein, E., and Veres, G. (1995) Genetic instability of a MoMLV-based antisense double-copy retroviral vector designed for HIV-1 gene therapy. Gene Ther. 2, 639–646.

    PubMed  CAS  Google Scholar 

  41. Bordignon, C., Notarangelo, L. D., Nobili, N., et al. (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270, 470–475.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Lotti, F., Mavilio, F. (2003). The Choice of a Suitable Lentivirus Vector. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology™, vol 229. Humana Press. https://doi.org/10.1385/1-59259-393-3:17

Download citation

  • DOI: https://doi.org/10.1385/1-59259-393-3:17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-091-5

  • Online ISBN: 978-1-59259-393-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics