Advertisement

Lymphocytes

  • Dhanalakashmi Chinnasamy
  • Fabio Candotti
Part of the Methods in Molecular Biology™ book series (MIMB, volume 229)

Abstract

The manipulation of gene expression in primary lymphocytes has been shown to have potential therapeutic applications for immunodeficiencies (1, 2, 3), and cancer immunotherapy (4,5). Efficient gene transfer is an absolute prerequisite for developing successful clinical gene therapy protocols. At present, viral gene transfer vectors based on murine leukemia virus (MLV) are used in most clinical trials and have been used successfully to transduce cells from various tissues, including cells of hematopoietic origin (6, 7, 8). However, transduction of primary lymphocytes has been limited primarily by the requirement that the cells be proliferating for stable retroviral integration (9). Although potent induction of cell proliferation in vitro has been used to overcome this problem (1,10, 11, 12), it has now become evident that activation stimuli such as antibodies and mitogens result in alteration of the CD4/CD8 ratios and T-cell receptor (TCR) repertoire composition of T lymphocytes and induce changes of their cytokine secretion profile, thus precluding preservation of the pool of naïve lymphocytes and their functional integrity (13,14).

Keywords

Primary Lymphocyte Cytokine Secretion Profile Packaging Construct Repertoire Composition Primary Human Lymphocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blaese, R. M., Culver, K. W., Miller, A. D., et al. (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270, 475–480.PubMedCrossRefGoogle Scholar
  2. 2.
    Woffendin, C., Ranga, U., Yang, Z., Xu, L., and Nabel, G. J. (1996) Expression of a protective gene prolongs survival of T cells in human immunodeficiency virus-infected patients. Proc. Natl. Acad. Sci. USA 93, 2889–2894.PubMedCrossRefGoogle Scholar
  3. 3.
    Chinen, J., Aguilar-Cordova, E., Ng-Tang, D., Lewis, D. E., and Belmont, J. W. (1997) Protection of primary human T cells from HIV infection by Trev: a transdominant fusion gene. Hum. Gene Ther. 8, 861–868.PubMedCrossRefGoogle Scholar
  4. 4.
    Hwu, P., Shafer, G. E., Treisman, J., et al. (1993) Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J. Exp. Med. 178, 361–366.PubMedCrossRefGoogle Scholar
  5. 5.
    Hwu, P. and Rosenberg, S. A. (1994) The genetic modification of T cells for cancer therapy: an overview of laboratory and clinical trials. Cancer Detect. Prev. 18, 43–50.PubMedGoogle Scholar
  6. 6.
    Bordignon, C., Notarangelo, L. D., Nobili, N., et al. (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270, 470–475.PubMedCrossRefGoogle Scholar
  7. 7.
    Kohn, D. B., Weinberg, K. I., Nolta, J. A., et al. (1995) Engraftment of genemodified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat. Med. 1, 1017–1023.PubMedCrossRefGoogle Scholar
  8. 8.
    Dunbar, C. E., Cottler-Fox, M., O’Shaughnessy, J. A., et al. (1995) Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85, 3048–3057.PubMedGoogle Scholar
  9. 9.
    Miller, D. G., Adam, M. A., and Miller, A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol. 10, 4239–4242.PubMedGoogle Scholar
  10. 10.
    Mavilio, F., Ferrari, G., Rossini, S., et al. (1994) Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer. Blood 83, 1988–1997.PubMedGoogle Scholar
  11. 11.
    Quinn, E. R., Lum, L. G., and Trevor, K. T. (1998) T cell activation modulates retrovirus-mediated gene expression. Hum. Gene Ther. 9, 1457–1467.PubMedCrossRefGoogle Scholar
  12. 12.
    Pollok, K. E., van der Loo, J. C., Cooper, R. J., Kennedy, L., and Williams, D. A. (1999) Costimulation of transduced T lymphocytes via T cell receptor-CD3 complex and CD28 leads to increased transcription of integrated retrovirus. Hum. Gene Ther. 10, 2221–2236.PubMedCrossRefGoogle Scholar
  13. 13.
    Seder, R. A. (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells. J. Allergy Clin. Immunol. 94, 1195–1202.PubMedCrossRefGoogle Scholar
  14. 14.
    Dietrich, P. Y., Walker, P. R., Schnuriger, V., et al. (1997) TCR analysis reveals significant repertoire selection during in vitro lymphocyte culture. Int. Immunol. 9, 1073–1083.PubMedCrossRefGoogle Scholar
  15. 15.
    Naldini, L., Blomer, U., Gallay, P., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.PubMedCrossRefGoogle Scholar
  16. 16.
    Reiser, J., Harmison, G., Kluepfel-Stahl, S., Brady, R. O., Karlsson, S., and Schubert, M. (1996) Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci. USA 93, 15,266–15,271.PubMedCrossRefGoogle Scholar
  17. 17.
    Gallay, P., Swingler, S., Aiken, C., and Trono, D. (1995) HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell 80, 379–388.PubMedCrossRefGoogle Scholar
  18. 18.
    Gallay, P., Swingler, S., Song, J., Bushman, F., and Trono, D. (1995) HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 83, 569–576.PubMedCrossRefGoogle Scholar
  19. 19.
    Bukrinsky, M. I. and Haffar, O. K. (1997) HIV-1 nuclear import: in search of a leader. Front. Biosci. 2, d578–d587.PubMedGoogle Scholar
  20. 20.
    Page, K. A., Landau, N. R., and Littman, D. R. (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64, 5270–5276.PubMedGoogle Scholar
  21. 21.
    Freed, E. O., Delwart, E. L., Buchschacher, G. L. Jr., and Panganiban, A. T. (1992) A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc. Natl. Acad. Sci. USA 89, 70–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875.PubMedCrossRefGoogle Scholar
  23. 23.
    Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q. X., Planelles, V., and Chen, I. S. (1996) High-efficiency gene transfer into CD34+ cells with a human immunode-ficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581–2585.PubMedGoogle Scholar
  24. 24.
    Cullen, B. R. (1998) HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93, 685–692.PubMedCrossRefGoogle Scholar
  25. 25.
    Emerman, M. and Malim, M. H. (1998) HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280, 1880–1884.PubMedCrossRefGoogle Scholar
  26. 26.
    Miyoshi, H., Takahashi, M., Gage, F. H., and Verma, I. M. (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA 94, 10,319–10,323.PubMedCrossRefGoogle Scholar
  27. 27.
    Uchida, N., Sutton, R. E., Friera, A. M., et al. (1998) HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 95, 11,939–11,944.PubMedCrossRefGoogle Scholar
  28. 28.
    Mochizuki, H., Schwartz, J. P., Tanaka, K., Brady, R. O., and Reiser, J. (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J. Virol. 72, 8873–8883.PubMedGoogle Scholar
  29. 29.
    Fauci, A. S., Pantaleo, G., Stanley, S., and Weissman, D. (1996) Immunopathogenic mechanisms of HIV infection. Ann. Intern. Med. 124, 654–663.PubMedGoogle Scholar
  30. 30.
    Kinoshita, S., Chen, B. K., Kaneshima, H., and Nolan, G. P. (1998) Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell 95, 595–604.PubMedCrossRefGoogle Scholar
  31. 31.
    Chun, T. W., Engel, D., Mizell, S. B., Ehler, L. A., and Fauci, A. S. (1998) Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J. Exp. Med. 188, 83–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Unutmaz, D., KewalRamani, V. N., Marmon, S., and Littman, D. R. (1999) Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 189, 1735–1746.PubMedCrossRefGoogle Scholar
  33. 33.
    Kitchen, S. G., Korin, Y. D., Roth, M. D., Landay, A., and Zack, J. A. (1998) Costimulation of naive CD8(+) lymphocytes induces CD4 expression and allows human immunodeficiency virus type 1 infection. J. Virol. 72, 9054–9060.PubMedGoogle Scholar
  34. 34.
    Zhang, Z., Schuler, T., Zupancic, M., et al. (1999) Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357.PubMedCrossRefGoogle Scholar
  35. 35.
    Chinnasamy, D., Chinnasamy, N., Enriquez, M. J., Otsu, M., Morgan, R. A., and Candotti, F. (2000) Lentiviral-mediated gene transfer into human lymphocytes: role of HIV-1 accessory proteins. Blood 96, 1309–1316.PubMedGoogle Scholar
  36. 36.
    Hanenberg, H., Xiao, X. L., Dilloo, D., Hashino, K., Kato, I., and Williams, D. A. (1996) Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat. Med. 2, 876–882.PubMedCrossRefGoogle Scholar
  37. 37.
    Pollok, K. E., Hanenberg, H., Noblitt, T. W., et al. (1998) High-efficiency gene transfer into normal and adenosine deaminase-deficient T lymphocytes is mediated by transduction on recombinant fibronectin fragments. J. Virol. 72, 4882–4892.PubMedGoogle Scholar
  38. 38.
    Fehse, B., Schade, U. M., Li, Z., et al. (1998) Highly-efficient gene transfer with retroviral vectors into human T lymphocytes on fibronectin. Br. J. Haematol. 102, 566–574.PubMedCrossRefGoogle Scholar
  39. 39.
    Dardalhon, V., Noraz, N., Pollok, K., et al. (1999) Green fluorescent protein as a selectable marker of fibronectin-facilitated retroviral gene transfer in primary human T lymphocytes. Hum. Gene Ther. 10, 5–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Cheng, L., Fu, J., Tsukamoto, A., and Hawley, R. G. (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat. Biotechnol. 14, 606–609.PubMedCrossRefGoogle Scholar
  41. 41.
    Telford, W. G., King, L. E., and Fraker, P. J. (1992) Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry. Cytometry 13, 137–143.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Dhanalakashmi Chinnasamy
    • 1
  • Fabio Candotti
    • 2
  1. 1.St. Luke’s Medical Center Aurora Health CareMilwaukee
  2. 2.National Human Genome Research InstituteNational Institutes of HealthBethesda

Personalised recommendations