Advertisement

Detection and Selection of Lentiviral Vector-Transduced Cells

  • Yan Cui
  • Lung-Ji Chang
Part of the Methods in Molecular Biology™ book series (MIMB, volume 229)

Abstract

Lentiviruses are members of a subgroup of enveloped Retroviridae. Lentivirus-based gene delivery vectors have gained popularity in gene therapy field because of their notable potentials in delivering and integrating transgenes into both mitotic active and inactive cells in vitro and in vivo, a characteristic that overcomes many of the barriers of therapeutic gene therapy application. In the past few years, different lentiviral vector systems have been developed based on primate and nonprimate lentiviruses, including human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), equine infectious anemia virus (EIAV), and feline immunodeficiency virus (FIV) (see refs. 1, 2, 3, 4). However, HIV-1-based lentiviral vector remains the best-studied and well-developed lentiviral vector system that has shown high transduction efficiencies targeting many human and experimental animal cell types, including stem cells (embryonic and adult) (5, 6, 7, 8, 9, 10), terminally differentiated somatic cells (i.e., neurons) (7,11,12), muscles (7,13,14), skin (15), liver (13,16,17), islet (18,19), lung epithelium (20,21), retina (22,23), primary T lymphocytes (24,25), and fetal tissues (21,26) (Table 1).
Table 1

Relative Efficiencies of Transduction of Various Cell Lines and Primary Cells with VSV-G Pseudotyped Lentiviral Vectorsa

 

Cell type b

Relative efficiency (+ to ++++ c )

Cell lines

  

(human)

  

HEK293

embryonic kidney cells

++++

TE671

rhabdomyosarcoma cells

++++

HeLa

cervical adenocarcinoma

++++

HepG2

hepatoma cells

++++

IB3-1

CF d bronchial epithelial cells

+++

K562

chronic myelogenous leukemia

++++

U937

myeloid leukemia cells

++++

A20

B cell lymphoma

+

EBV blasts

EBV transformed B lymphoma

+++

(mouse)

  

Renca

renal cell carcinoma

++++

CT26

colon carcinoma

++++

NIH3T3

fibroblasts

+++

BaF3

pre-B lymphoma

+++

TF1

proerythroblastic leukemia cells

++++

DC2.4

immortalized immature DC

++/+++

P19

embryonic carcinoma

+++

Primary cells

  

(human)

  

HUVEC

umbilical vein endothelial cells

+++

CD34+ cells

hematopoietic stem/progenitor cells

++/+++ e

monocytes

myeloid cells

++

DC

immature dendritic cells

+++

T cells

lymphocytes

+++ f

B cells (other species)

lymphocytes

+

ESC

mouse embryonic stem cells

+++

neuron

rat neuronal cells

+++

liver stem cells

rat oval cells

+++

liver

primary rat hepatocytes

++

RPE

rat retinal pigment epithelial cells

++++

rod

chicken eye rod cells

++

bone marrow

mouse BM mixed population

+++

HSC

mouse hematopoietic stem/progenitor cells

++

a The results of primary cell transduction are only for reference comparison; they are based on in vivo or ex vivo culture transduced using HIV-1 vectors carrying different reporter genes. Therefore, the efficiency can vary markedly depending on the type of reporter gene and the infection condition. b If not specifi ed, the cell types are referring to human cells. c Relative efficiency is defi ned as: ++++ = >50% cells transduced at MOI of 1 to 5; +++ = >50% cells transduced at MOI of 5 to 10; ++ = >30% cells transduced at MOI of 10–20; and + = 1–20% cells transduced at MOI>20. d Cystic fibrosis. e Transduction effi ciency of cytokine-stimulated CD34+ stem cells (+++) is higher than that of unstimulated cells (++). f Both naive and activated human T lymphocytes can be transduced relatively easily with lentiviral vectors; the transgene expression level in naïve T cells, however, is very low and barely above background level.

Keywords

Simian Immunodeficiency Virus Feline Immunodeficiency Virus TE671 Cell Equine Infectious Anemia Virus Nerve Growth Factor Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Verma, I. M. and Somia, N. (1997) Gene therapy—promises, problems and prospects. Nature 389, 239–242.PubMedCrossRefGoogle Scholar
  2. 2.
    Amado, R. G. and Chen, I. S. (1999) Lentiviral vectors—the promise of gene therapy within reach? Science 285, 674–676.PubMedCrossRefGoogle Scholar
  3. 3.
    Federico, M. (1999) Lentiviruses as gene delivery vectors. Curr. Opin. Biotechnol. 10, 448–453.PubMedCrossRefGoogle Scholar
  4. 4.
    Chang, L.-J. and Gay, E. E. (2001) The molecular genetics of lentiviral vectors—current and future perspectives. Curr. Gene Ther. 1, 237–251.PubMedCrossRefGoogle Scholar
  5. 5.
    Uchida, N., Sutton, R. E., Friera, A. M., et al. (1998) HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 95, 11,939–11,944.PubMedCrossRefGoogle Scholar
  6. 6.
    Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M., and Torbett, B. E. (1999) Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682–686.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang, L.-J., Urlacher, V., Iwakuma, T., Cui, Y., and Zucali, J. (1999) Efficacy and safety analyses of a recombinant human immunodeficiency virus type 1 derived vector system. Gene Ther. 6, 715–728.PubMedCrossRefGoogle Scholar
  8. 8.
    Hamaguchi, I., Woods, N. B., Panagopoulos, I., et al. (2000) Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro. J. Virol. 74, 10,778–10,784.PubMedCrossRefGoogle Scholar
  9. 9.
    Lois, C., Hong, E. J., Pease, S., Brown, E. J., and Baltimore, D. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872.PubMedCrossRefGoogle Scholar
  10. 10.
    Wolfgang, M. J., Eisele, S. G., Browne, M. A., et al. (2001) Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos. Proc. Natl. Acad. Sci. USA 98, 10,728–10,732.PubMedCrossRefGoogle Scholar
  11. 11.
    Naldini, L., Blomer, U., Gage, F. H., Trono, D., and Verma, I. M. (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11,382–11,388.PubMedCrossRefGoogle Scholar
  12. 12.
    Blomer, U., Naldini, L., Kafri, T., Trono, D., Verma, I. M., and Gage, F. H. (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649.PubMedGoogle Scholar
  13. 13.
    Kafri, T., Blomer, U., Peterson, D. A., Gage, F. H., and Verma, I. M. (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 17, 314–317.PubMedCrossRefGoogle Scholar
  14. 14.
    Sakoda, T., Kasahara, N., Hamamori, Y., and Kedes, L. (1999) A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J. Mol. Cell Cardiol. 31, 2037–2047.PubMedCrossRefGoogle Scholar
  15. 15.
    Baek, S. C., Lin, Q., Robbins, P. B., Fan, H., and Khavari, P. A. (2001) Sustainable systemic delivery via a single injection of lentivirus into human skin tissue. Hum. Gene Ther. 12, 1551–1558.PubMedCrossRefGoogle Scholar
  16. 16.
    Pfeifer, A., Kessler, T., Yang, M., et al. (2001) Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol. Ther. 3, 319–322.PubMedCrossRefGoogle Scholar
  17. 17.
    Follenzi, A., Sabatino, G., Lombardo, A., Boccaccio, C., and Naldini, L. (2002) Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum. Gene Ther. 13, 243–260.PubMedCrossRefGoogle Scholar
  18. 18.
    Gallichan, W. S., Kafri, T., Krahl, T., Verma, I. M., and Sarvetnick, N. (1998) Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum. Gene Ther. 9, 2717–2726.PubMedCrossRefGoogle Scholar
  19. 19.
    Giannoukakis, N., Mi, Z., Gambotto, A., et al. (1999) Infection of intact human islets by a lentiviral vector. Gene Ther. 6, 1545–1551.PubMedCrossRefGoogle Scholar
  20. 20.
    Goldman, M. J., Lee, P.-S., Yang, J.-S., and Wilson, J. M. (1997) Lentiviral vectors for gene therapy of cystic fibrosis. Hum. Gene Ther. 8, 2261–2268.PubMedCrossRefGoogle Scholar
  21. 21.
    Tarantal, A. F., Lee, C. I., Ekert, J. E., et al. (2001) Lentiviral vector gene transfer into fetal rhesus monkeys (Macaca mulatta): lung-targeting approaches. Mol. Ther. 4, 614–621.PubMedCrossRefGoogle Scholar
  22. 22.
    Miyoshi, H., Takahashi, M., Gage, F. H., and Verma, I. M. (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA 94, 10,319–10,323.PubMedCrossRefGoogle Scholar
  23. 23.
    Bainbridge, J. W., Stephens, C., Parsley, K., et al. (2001) In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther. 8, 1665–1668.PubMedCrossRefGoogle Scholar
  24. 24.
    Chinnasamy, D., Chinnasamy, N., Enriquez, M. J., Otsu, M., Morgan, R. A., and Candotti, F. (2000) Lentiviral-mediated gene transfer into human lymphocytes: role of HIV-1 accessory proteins. Blood 96, 1309–1316.PubMedGoogle Scholar
  25. 25.
    Costello, E., Munoz, M., Buetti, E., Meylan, P. R., Diggelmann, H., and Thali, M. (2000) Gene transfer into stimulated and unstimulated T lymphocytes by HIV-1-derived lentiviral vectors. Gene Ther. 7, 596–604.PubMedCrossRefGoogle Scholar
  26. 26.
    Zahler, M. H., Irani, A., Malhi, H., et al. (2000) The application of a lentiviral vector for gene transfer in fetal human hepatocytes. J. Gene Med. 2, 186–193.PubMedCrossRefGoogle Scholar
  27. 27.
    Poznansky, M., Lever, A., Bergeron, L., Haseltine, W., and Sodroski, J. (1991) Gene transfer into human lymphocytes by a defective human immunodeficiency virus type 1 vector. J. Virol. 65, 532–536.PubMedGoogle Scholar
  28. 28.
    Yu, H., Rabson, A. B., Kaul, M., Ron, Y., and Dougherty, J. P. (1996) Inducible human immunodeficienty virus type 1 packaging cell lines. J. Virol. 70, 4530–4537.PubMedGoogle Scholar
  29. 29.
    Naldini, L., Blomer, U., Gallay, P., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.PubMedCrossRefGoogle Scholar
  30. 30.
    Dull, T., Zufferey, R., Kelly, M., et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471.PubMedGoogle Scholar
  31. 31.
    Cui, Y., Iwakuma, T., and Chang, L. J. (1999) Contributions of viral splice sites and cis-regulatory elements to lentivirus vector function. J. Virol. 73, 6171–6176.PubMedGoogle Scholar
  32. 32.
    Iwakuma, T., Cui, Y., and Chang, L. J. (1999) Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261, 120–132.PubMedCrossRefGoogle Scholar
  33. 33.
    Lever, A. M. L. (2000) HIV RNA packaging and lentiviral-based vectors. Adv. Pharmacol. 48, 1–28.PubMedCrossRefGoogle Scholar
  34. 34.
    Kafri, T., van Praag, H., Gage, F. H., and Verma, I. M. (2000) Lentiviral vectors: regulated gene expression. Mol. Ther. 1, 516–521.PubMedCrossRefGoogle Scholar
  35. 35.
    Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., and Charneau, P. (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101, 173–185.PubMedCrossRefGoogle Scholar
  36. 36.
    Case, S. S., Price, M. A., Jordan, C. T., et al. (1999) Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl. Acad. Sci. USA 96, 2988–2993.PubMedCrossRefGoogle Scholar
  37. 37.
    Hawley, T. S., Telford, W. G., and Hawley, R. G. (2001) “Rainbow” reporters for multispectral marking and lineage analysis of hematopoietic stem cells. Stem Cells 19, 118–124.PubMedCrossRefGoogle Scholar
  38. 38.
    Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J., and Muzyczka, N. (1996) A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654.PubMedGoogle Scholar
  39. 39.
    Cui, Y., Golob, J., Kelleher, E., Ye, Z., Pardoll, D., and Cheng, L. (2002) Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 99, 399–408.PubMedCrossRefGoogle Scholar
  40. 40.
    MacLaren, D. C., Gambhir, S. S., Satyamurthy, N., et al. (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 6, 785–791.PubMedCrossRefGoogle Scholar
  41. 41.
    Sun, X., Annala, A. J., Yaghoubi, S. S., et al. (2001) Quantitative imaging of gene induction in living animals. Gene Ther. 8, 1572–1579.PubMedCrossRefGoogle Scholar
  42. 42.
    Gambhir, S. S., Barrio, J. R., Phelps, M. E., et al. (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338.PubMedCrossRefGoogle Scholar
  43. 43.
    Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672.PubMedCrossRefGoogle Scholar
  44. 44.
    Hanawa, H., Kelly, P. F., Nathwani, A. C., et al. (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol. Ther. 5, 242–251.PubMedCrossRefGoogle Scholar
  45. 45.
    Stitz, J., Buchholz, C. J., Engelstadter, M., et al. (2000) Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 273, 16–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Yu, D., Chen, D., Chiu, C., Razmazma, B., Chow, Y. H., and Pang, S. (2001) Prostate-specific targeting using PSA promoter-based lentiviral vectors. Cancer Gene Ther. 8, 628–635.PubMedCrossRefGoogle Scholar
  47. 47.
    Lotti, F., Menguzzato, E., Rossi, C., et al. (2002) Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement. J. Virol. 76, 3996–4007.PubMedCrossRefGoogle Scholar
  48. 48.
    Sambrook, J. and Russell, D. W. (2001) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  49. 49.
    Zaiss, A.-K., Son, S., and Chang, L.-J. (2002) RNA 3′-readthrough of oncoretrovirus and lentivirus: implications in vector safety and efficacy. J. Virol. 76, 7209–7219.PubMedCrossRefGoogle Scholar
  50. 50.
    Higashikawa, F. and Chang, L.-J. (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280, 124–131.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Yan Cui
    • 1
  • Lung-Ji Chang
    • 2
    • 3
  1. 1.Gene Therapy Program, Stanley S. Scott Cancer Center, Department of MedicineLouisiana State University Health Sciences Center
  2. 2.Department of Molecular Genetics and Microbiology, Powell Gene Therapy CenterUniversity of FloridaGainesville
  3. 3.McKnight Brain InstituteUniversity of FloridaGainesville

Personalised recommendations