Skip to main content

Products of Arachidonic Acid Metabolism

  • Protocol
Renal Disease

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 86))

Abstract

Segmentation of the nephron relative to transport mechanisms and secretory activity has been recognized for decades, beginning with the pioneering studies of Alfred Newton Richards (1). Nephron segmentation regarding transcellular sodium and water movement has been subjected to a “comprehensive analysis of sodium transporter and water-channel protein abundance along the renal tubule” by Knepper and Masilamani (2). This experimental approach, based on targeted proteomics, uses an “ensemble of rabbit polyclonal antibodies directed to the major sodium transporters and water channels expressed in each renal tubule segment.” It allows and facilitates characterization and analysis of tubular functional differences that define individual nephron segments. However, individual tubular segments can be further subdivided according to secretory activity and transport mechanisms as, for example, the proximal tubules which have three portions (S1, S2, S3) distinguished by morphological differences and exhibiting multiple segregated functions such as the organic and anion secretory system (3) housed primarily in the straight segment (S2), and angiotensin II (ANGII) regulated reabsorptive function, localized primarily in the first few mm of the proximal tubules S1 segment (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fishman, A. P. and Richards, D. W. (eds.) (1964) Circulation of the Blood. Oxford University Press, New York, p. 591.

    Google Scholar 

  2. Knepper, M. A. and Masilamani S. (2001) Targeted proteomics in the kidney using ensembles of antibodiesaiai. Acta Physiol. Scand. 173, 11–21.

    Article  PubMed  CAS  Google Scholar 

  3. Brenner, B. M. and Rector, F. C. (eds.) (1991) The Kidney, 4th ed., Vol. 1., W.B. Saunders Company, Philadelphia, PA, p. 486.

    Google Scholar 

  4. Cogan, M. (1990) Angiotensin II: a powerful controller of sodium transport in the early proximal tubule. Hypertension 15, 451–458.

    PubMed  CAS  Google Scholar 

  5. Omata, K., Abraham, N. G., and Schwartzman, M. L. (1992) Renal cytochrome P-450 arachidonic acid metabolism: intrarenal localization and hormonal regulation in SHR. Am. J. Physiol. 262, F591–F599.

    PubMed  CAS  Google Scholar 

  6. McGiff, J. C. and Quilley, J. (1999) 20-HETE and the kidney: resolution of old problems and new beginnings. Am. J. Physiol. 277, R607–R623.

    PubMed  CAS  Google Scholar 

  7. Roman, R. J. (2001) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185.

    Google Scholar 

  8. Ferreri, N. R., Schwartzman, M., Ibraham, N. G., Chander, P. N., and McGiff, J. C. (1984) Arachidonic acid metabolism in a cell suspension isolated from rabbit renal outer medulla. J. Pharmacol. Exper. Ther. 231, 441–448.

    CAS  Google Scholar 

  9. Schwartzman, M., Ferreri, N. R., Carroll, M. A., Songu-Mize, E., and McGiff, J. C. (1985) Renal cytochrome P450-related arachidonate metabolite inhibits (Na+-K+) ATPase. Nature 314, 620–622.

    Article  PubMed  CAS  Google Scholar 

  10. Escalante, B. A., McGiff, J. C., and Oyekan, A. O. (2002) Role of cytochrome P-450 arachidonate metabolites in endothelin signaling in rat proximal tubule. Am. J. Physiol. 282, F144–F150.

    CAS  Google Scholar 

  11. Romero, M. F., Madhun, Z. T., Hopfer, U., and Douglas, J. G. (1991) An epoxygenase metabolite of arachidonic acid 5,6-epoxy-eicosatrienoic acid mediates angiotensin-induced natriuresis in proximal tubular epithelium. Adv. Prostaglandin Thromboxane Leukotriene Res. 21, 205–208.

    Google Scholar 

  12. Drugge, E. D., Carroll, M. A., and McGiff, J. C. (1989) Cells in culture from rabbit medullary thick ascending limb of Henle’s loop. Am. J. Physiol. 256, C1070–C1081.

    PubMed  CAS  Google Scholar 

  13. Carroll, M. A., Sala, A., Dunn, C. E., McGiff, J. C., and Murphy, R. C. (1991) Structural identification of cytochrome P450-dependent arachidonate metabolites formed by rabbit medullary thick ascending limb cells. J. Biol. Chem. 266, 12,306–12,312.

    PubMed  CAS  Google Scholar 

  14. Imig, J. D. (2000) Eicosanoid regulation of the renal vasculature. Am. J. Physiol. 279, F965–F981.

    CAS  Google Scholar 

  15. Escalante, B., Erlij, D., Falck, J. R., and McGiff, J. C. (1991) Effect of cytochrome P450 arachidonate metabolites on ion transport in rabbit kidney loop of Henle. Science 251, 799–802.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, W., Lu, M., and Hebert, S. C. (1996) Cytochrome P-450 metabolites mediate extracellular Ca2+-induced inhibition of apical K+ channels in the TAL. Am. J. Physiol. 271, C103–C111.

    PubMed  CAS  Google Scholar 

  17. Ma, Y.-H., Schwartzman, M. L., and Roman, R. J. (1994) Altered renal P-450 metabolism of arachidonic acid in Dahl salt-sensitive rats. Am. J. Physiol. 267, R579–F589.

    PubMed  CAS  Google Scholar 

  18. Carroll, M. A., Kemp, R., Cheng, M. K., and McGiff, J. C. (2001) Regulation of preglomerular microvascular 20-hydroxyeicosatetraenoic acid levels by salt depletion. Med. Sci. Monit. 7, 567–572.

    PubMed  CAS  Google Scholar 

  19. Burg, M. B. (1982) Thick ascending limb of Henle’s loop. Kidney Int. 22, 454–464.

    Article  PubMed  CAS  Google Scholar 

  20. Hebert, S. C., Culpepper, R. M., and Andreoli, T. E. (1981) NaCl transport in mouse medullary thick ascending limb. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am. J. Physiol. 241, F412–F431.

    PubMed  CAS  Google Scholar 

  21. Scott, D. M. (1987) Differentiation in vitro of primary cultures and transfected cell lines of epithelial cells derived from the thick ascending limb of Henle’s loop. Differentiation 36, 35–46.

    Article  PubMed  CAS  Google Scholar 

  22. Allen, M. L., Nakao, A., Sonnenburg, W. K., Burnatowska-Hledin, M., Spielman, W. S., and Smith, W. L. (1988) Immunodissection of cortical and medullary thick ascending limb cells from rabbit kidney. Am. J. Physiol. 255, F704–F710.

    PubMed  CAS  Google Scholar 

  23. Burg, M., Green, N., Sohraby, S., Steele, R., and Handler, J. (1982) Differentiated in cultured epithelia derived from thick ascending limbs. Am. J. Physiol. 242, C229–C233.

    PubMed  CAS  Google Scholar 

  24. Eveloff, J., Haase, W., and Kinne, R. (1980) Separation of renal medullary cells: isolation of cells from the thick ascending limb of Henle’s loop. J. Cell Biol. 87, 672–681.

    Article  PubMed  CAS  Google Scholar 

  25. Trinh-Trang-Tan, M.-M., Bouby, N., Coutaud, C., and Bankir, L. (1986) Quick isolation of rat medullary thick ascending limbs: Enzymatic and metabolic characterization. Pflugers Arch. 407, 228–234.

    Article  PubMed  CAS  Google Scholar 

  26. Navar, L. G. (1998) Integrating multiple paracrine regulators of renal microvascular dynamics. Am. J. Physiol. 274, F433–F444.

    PubMed  CAS  Google Scholar 

  27. Croft, K. D., McGiff, J. C., Sanchez-Mendoza, A., and Carroll, M. A. (2000) Angiotensin II releases 20-HETE from rat renal microvessels. Am. J. Physiol. 279, F544–F551.

    CAS  Google Scholar 

  28. Imig, J. D., Zou, A. P., Stec, D. E., Harder, D. R., Falck, J. R., and Roman, R. J. (1996) Formation and actions of 20-hydroxyeicosatetraenoic acid in rat renal arterioles. Am. J. Physiol. 270, R217–R227.

    PubMed  CAS  Google Scholar 

  29. Carroll, M. A., Balazy, M., Huang, D. D., Rybalova, S., Falck, J. R., and McGiff, J. C. (1997) Cytochrome P450-derived renal HETEs: storage and release. Kidney Int. 51, 1696–1702.

    Article  PubMed  CAS  Google Scholar 

  30. McGiff, J. C. and Carroll, M. A. (1987) Cytochrome P-450-related arachidonic acid metabolites. Am. Rev. Respir. Dis. 136, 488–491.

    PubMed  CAS  Google Scholar 

  31. Morrison, A. R. and Pascoe, N. (1981) Metabolism of arachidonate through NADPH-dependent oxygenase of renal cortex. Proc. Natl. Acad. Sci. USA 78, 7375–7378.

    Article  PubMed  CAS  Google Scholar 

  32. McGiff, J. C. (1991) Cytochrome P-450 metabolism of arachidonic acid. Annu. Rev. Pharmacol. Toxicol. 31, 339–369.

    Article  PubMed  CAS  Google Scholar 

  33. Schwartzman, M. L. and McGiff, J. C. (1995) Renal cytochrome P450. J. Lipid Mediat. Cell Signal. 12, 229–242.

    Article  PubMed  CAS  Google Scholar 

  34. Tobian, L. (1987) Does essential hypertension lead to renal failure? Am. J. Cardiol. 60, 42I–46I.

    Article  PubMed  CAS  Google Scholar 

  35. Chatziantoniou, C. and Arendshorst, W. J. (1993) Angiotensin receptor sites in renal vasculature of rats developing genetic hypertension. Am. J. Physiol. 265, F853–F862.

    PubMed  CAS  Google Scholar 

  36. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  37. Brezis, M., Rosen, S., Silva, P., and Epstein, F. H. (1984) Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J. Clin. Invest. 73, 182–190.

    Article  PubMed  CAS  Google Scholar 

  38. Escalante, B. A., Ferreri, N. R., Dunn, C. E., and McGiff, J. C. (1994) Cytokines affect ion transport in primary cultured thick ascending limb of Henle’s loop cells. Am. J. Physiol. 266, C1568–C1576.

    PubMed  CAS  Google Scholar 

  39. Macica, C., Escalante, B. A., Conners, M. S., and Ferreri, N. R. (1994) TNF production by the medullary thick ascending limb of Henle’s loop. Kidney Int. 46, 113–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Carroll, M.A., McGiff, J.C., Ferreri, N.R. (2003). Products of Arachidonic Acid Metabolism. In: Goligorsky, M.S. (eds) Renal Disease. Methods in Molecular Medicine™, vol 86. Humana Press. https://doi.org/10.1385/1-59259-392-5:385

Download citation

  • DOI: https://doi.org/10.1385/1-59259-392-5:385

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-134-9

  • Online ISBN: 978-1-59259-392-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics