Functional Studies of the Kidney with Magnetic Resonance Imaging

  • Hani B. Marcos
  • Yantian Zhang
  • Peter L. Choyke
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 86)

Abstract

The measurement of renal function by imaging techniques is an important clinical and research tool. Early and reliable detection of changes in renal function are used to evaluate prognosis and the therapeutic approach to patients, and can be used to influence patient management. One intrinsic limitation of laboratory methods of evaluation is that they provide only a global evaluation of renal function with little anatomic information. Radionuclide methods of evaluation offer an advantage to biochemical methods because they can demonstrate side-to-side differences in renal function (1). However, radionuclide methods are limited by spatial resolution, as well as the exposure to radioactive contrast agents that accumulate in the bladder and thus disproportionately irradiate the gonads.

Keywords

Dioxide Hydrate Filtration Attenuation Radionuclide 

References

  1. 1.
    Taylor, A. (1999) Radionuclide renography: a personal approach. Semin. Nucl. Med. 29(2), 102–127. Review.PubMedCrossRefGoogle Scholar
  2. 2.
    Bennett, H. F. and Li, D. (1997) MR imaging of renal function. Magn. Reson. Imaging Clin. N. Am. 5(1), 107–126.PubMedGoogle Scholar
  3. 3.
    Choyke, P. L., Frank, J. A., Girton, M. E., Inscoe, S. W., Carvlin, M. J., Black, J. L., et al. (1989) Dynamic Gd-DTPA-enhanced MR imaging of the kidney: experimental results. Radiology 170, 713–720.PubMedGoogle Scholar
  4. 4.
    Lee, V. S., Rusinek, H., Johnson, G., Rofsky, N. M., Krinsky, G. A., and Weinreb, J. C. (2001) MR renography with low-dose gadopentetate dimeglumine: feasibility. Radiology 221(2), 371–379.PubMedCrossRefGoogle Scholar
  5. 5.
    de Priester, J. A., Kessels, A. G., Giele, E. L., den Boer, J. A., Christiaans, M. H., Hasman, A., et al. (2001) MR renography by semiautomated image analysis: performance in renal transplant recipients. J. Magn. Reson. Imaging 14(2), 134–140.PubMedCrossRefGoogle Scholar
  6. 6.
    Taylor, J., Summers, P. E., Keevil, S. F., Saks, A. M., Diskin, J., Hilton, P. J., et al. (1991) Advances in contrast-enhanced MR imaging. Principles. AJR Am. J. Roentgenol. 156(2), 236–239.Google Scholar
  7. 7.
    Nelson, K. L., Gifford, L. M., Lauber-Huber, C., Gross, C. A., and Lasser, T. A. (1995) Clinical safety of gadopentetate dimeglumine. Radiology 196, 439–443.PubMedGoogle Scholar
  8. 8.
    Prince, M. R., Arnoldus, C., and Frisoli, J. F. (1996) Nephrotoxicity of high-dose gadolinium compared to iodinated contrast. JMRI 6, 162–166.PubMedCrossRefGoogle Scholar
  9. 9.
    Frank, J. A., Choyke, P. L., Austin, H. A., 3rd, Girton, M. E., and Weiss, G. (1991) Gadopentetate dimeglumine as a marker of renal function. Magnetic resonance imaging to glomerular filtration rates. Invest. Radiol. 26 Suppl 1, S134–S136; discussion S137–S138.PubMedGoogle Scholar
  10. 10.
    Grenier, N., Trillaud, H., Combe, C., et al. (1996) Diagnosis of renovascular hypertension: feasibility of captopril-sensitized dynamic MR imaging and comparison with captopril scintigraphy. AJR 166, 835–843.PubMedGoogle Scholar
  11. 11.
    Taylor, J., Summers, P. E., Keevil, S. F., Saks, A. M., Diskin, J., Hilton, P. J., et al. (1997) Magnetic resonance renography: optimisation of pulse sequence parameters and Gd-DTPA dose, and comparison with radionuclide renography. Magn. Reson. Imaging 15(6), 637–649.PubMedCrossRefGoogle Scholar
  12. 12.
    Berr, S. S., Hagspiel, K. D., Mai, V. M., Keilholz-George, S., Knight-Scott, J., Christopher, J. M., et al. (1999) Perfusion of the kidney using extraslice spin tagging (EST) magnetic resonance imaging. J. Magn. Reson. Imaging 10(5), 886–891.PubMedCrossRefGoogle Scholar
  13. 13.
    Siegel, C. L., Aisen, A. M., Ellis, J. H., Londy, F., and Chenevert, T. L. (1995) Feasibility of MR diffusion studies in the kidney. J. Magn. Reson. Imaging 5(5), 617–620.PubMedCrossRefGoogle Scholar
  14. 14.
    Prasad, P. V., Edelman, R. R., and Epstein, F. H. (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 15;94(12), 3271–3275.Google Scholar
  15. 15.
    Prasad, P. V., Chen, Q., Goldfarb, J. W., Epstein, F. H., and Edelman, R. R. (1997) Breath-hold R2✻ mapping with a multiple gradient-recalled echo sequence: application to the evaluation of intrarenal oxygenation. J. Magn. Reson. Imaging 7(6), 1163–1165.PubMedCrossRefGoogle Scholar
  16. 16.
    Prasad, P. V., Epstein, F. H., Li, W., et al. (1996) Intrarenal oxygenation with BOLD MRI: effects of diuretics, In Proceedings of the International Society of Magnetic Resonance in Medicine, New York, p. 9.Google Scholar
  17. 17.
    Schoenberg, S. O., Knopp, M. V., Londy, F., Krishnan, S., Zuna, I., and Lang, N. (2002) Morphologic and functional magnetic resonance imaging of renal artery stenosis: a multireader tricenter study. J. Am. Soc. Nephrol. 13(1), 158–169.PubMedGoogle Scholar
  18. 18.
    Dong, Q., Schoenberg, S. O., Carlos, R. C., Neimatallah, M., Cho, K. J., Williams, D. M., et al. (1999) Diagnosis of renal vascular disease with MR angiography. Radiographics 19(6), 1535–1554.PubMedGoogle Scholar
  19. 19.
    Marcos, H. B. and Choyke, P. L. (2000) Magnetic resonance angiography of the kidney. Semin. Nephrol. 20(5), 450–455.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Hani B. Marcos
    • 1
  • Yantian Zhang
    • 1
  • Peter L. Choyke
    • 1
  1. 1.Department of RadiologyNational Institutes of HealthBethesda

Personalised recommendations