Renal Disease pp 385-397 | Cite as

Products of Arachidonic Acid Metabolism

  • Mairead A. Carroll
  • John C. McGiff
  • Nicholas R. Ferreri
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 86)

Abstract

Segmentation of the nephron relative to transport mechanisms and secretory activity has been recognized for decades, beginning with the pioneering studies of Alfred Newton Richards (1). Nephron segmentation regarding transcellular sodium and water movement has been subjected to a “comprehensive analysis of sodium transporter and water-channel protein abundance along the renal tubule” by Knepper and Masilamani (2). This experimental approach, based on targeted proteomics, uses an “ensemble of rabbit polyclonal antibodies directed to the major sodium transporters and water channels expressed in each renal tubule segment.” It allows and facilitates characterization and analysis of tubular functional differences that define individual nephron segments. However, individual tubular segments can be further subdivided according to secretory activity and transport mechanisms as, for example, the proximal tubules which have three portions (S1, S2, S3) distinguished by morphological differences and exhibiting multiple segregated functions such as the organic and anion secretory system (3) housed primarily in the straight segment (S2), and angiotensin II (ANGII) regulated reabsorptive function, localized primarily in the first few mm of the proximal tubules S1 segment (4).

Keywords

Dopamine Luminal NADPH Indomethacin Epoxide 

References

  1. 1.
    Fishman, A. P. and Richards, D. W. (eds.) (1964) Circulation of the Blood. Oxford University Press, New York, p. 591.Google Scholar
  2. 2.
    Knepper, M. A. and Masilamani S. (2001) Targeted proteomics in the kidney using ensembles of antibodiesaiai. Acta Physiol. Scand. 173, 11–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Brenner, B. M. and Rector, F. C. (eds.) (1991) The Kidney, 4th ed., Vol. 1., W.B. Saunders Company, Philadelphia, PA, p. 486.Google Scholar
  4. 4.
    Cogan, M. (1990) Angiotensin II: a powerful controller of sodium transport in the early proximal tubule. Hypertension 15, 451–458.PubMedGoogle Scholar
  5. 5.
    Omata, K., Abraham, N. G., and Schwartzman, M. L. (1992) Renal cytochrome P-450 arachidonic acid metabolism: intrarenal localization and hormonal regulation in SHR. Am. J. Physiol. 262, F591–F599.PubMedGoogle Scholar
  6. 6.
    McGiff, J. C. and Quilley, J. (1999) 20-HETE and the kidney: resolution of old problems and new beginnings. Am. J. Physiol. 277, R607–R623.PubMedGoogle Scholar
  7. 7.
    Roman, R. J. (2001) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185.Google Scholar
  8. 8.
    Ferreri, N. R., Schwartzman, M., Ibraham, N. G., Chander, P. N., and McGiff, J. C. (1984) Arachidonic acid metabolism in a cell suspension isolated from rabbit renal outer medulla. J. Pharmacol. Exper. Ther. 231, 441–448.Google Scholar
  9. 9.
    Schwartzman, M., Ferreri, N. R., Carroll, M. A., Songu-Mize, E., and McGiff, J. C. (1985) Renal cytochrome P450-related arachidonate metabolite inhibits (Na+-K+) ATPase. Nature 314, 620–622.PubMedCrossRefGoogle Scholar
  10. 10.
    Escalante, B. A., McGiff, J. C., and Oyekan, A. O. (2002) Role of cytochrome P-450 arachidonate metabolites in endothelin signaling in rat proximal tubule. Am. J. Physiol. 282, F144–F150.Google Scholar
  11. 11.
    Romero, M. F., Madhun, Z. T., Hopfer, U., and Douglas, J. G. (1991) An epoxygenase metabolite of arachidonic acid 5,6-epoxy-eicosatrienoic acid mediates angiotensin-induced natriuresis in proximal tubular epithelium. Adv. Prostaglandin Thromboxane Leukotriene Res. 21, 205–208.Google Scholar
  12. 12.
    Drugge, E. D., Carroll, M. A., and McGiff, J. C. (1989) Cells in culture from rabbit medullary thick ascending limb of Henle’s loop. Am. J. Physiol. 256, C1070–C1081.PubMedGoogle Scholar
  13. 13.
    Carroll, M. A., Sala, A., Dunn, C. E., McGiff, J. C., and Murphy, R. C. (1991) Structural identification of cytochrome P450-dependent arachidonate metabolites formed by rabbit medullary thick ascending limb cells. J. Biol. Chem. 266, 12,306–12,312.PubMedGoogle Scholar
  14. 14.
    Imig, J. D. (2000) Eicosanoid regulation of the renal vasculature. Am. J. Physiol. 279, F965–F981.Google Scholar
  15. 15.
    Escalante, B., Erlij, D., Falck, J. R., and McGiff, J. C. (1991) Effect of cytochrome P450 arachidonate metabolites on ion transport in rabbit kidney loop of Henle. Science 251, 799–802.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang, W., Lu, M., and Hebert, S. C. (1996) Cytochrome P-450 metabolites mediate extracellular Ca2+-induced inhibition of apical K+ channels in the TAL. Am. J. Physiol. 271, C103–C111.PubMedGoogle Scholar
  17. 17.
    Ma, Y.-H., Schwartzman, M. L., and Roman, R. J. (1994) Altered renal P-450 metabolism of arachidonic acid in Dahl salt-sensitive rats. Am. J. Physiol. 267, R579–F589.PubMedGoogle Scholar
  18. 18.
    Carroll, M. A., Kemp, R., Cheng, M. K., and McGiff, J. C. (2001) Regulation of preglomerular microvascular 20-hydroxyeicosatetraenoic acid levels by salt depletion. Med. Sci. Monit. 7, 567–572.PubMedGoogle Scholar
  19. 19.
    Burg, M. B. (1982) Thick ascending limb of Henle’s loop. Kidney Int. 22, 454–464.PubMedCrossRefGoogle Scholar
  20. 20.
    Hebert, S. C., Culpepper, R. M., and Andreoli, T. E. (1981) NaCl transport in mouse medullary thick ascending limb. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am. J. Physiol. 241, F412–F431.PubMedGoogle Scholar
  21. 21.
    Scott, D. M. (1987) Differentiation in vitro of primary cultures and transfected cell lines of epithelial cells derived from the thick ascending limb of Henle’s loop. Differentiation 36, 35–46.PubMedCrossRefGoogle Scholar
  22. 22.
    Allen, M. L., Nakao, A., Sonnenburg, W. K., Burnatowska-Hledin, M., Spielman, W. S., and Smith, W. L. (1988) Immunodissection of cortical and medullary thick ascending limb cells from rabbit kidney. Am. J. Physiol. 255, F704–F710.PubMedGoogle Scholar
  23. 23.
    Burg, M., Green, N., Sohraby, S., Steele, R., and Handler, J. (1982) Differentiated in cultured epithelia derived from thick ascending limbs. Am. J. Physiol. 242, C229–C233.PubMedGoogle Scholar
  24. 24.
    Eveloff, J., Haase, W., and Kinne, R. (1980) Separation of renal medullary cells: isolation of cells from the thick ascending limb of Henle’s loop. J. Cell Biol. 87, 672–681.PubMedCrossRefGoogle Scholar
  25. 25.
    Trinh-Trang-Tan, M.-M., Bouby, N., Coutaud, C., and Bankir, L. (1986) Quick isolation of rat medullary thick ascending limbs: Enzymatic and metabolic characterization. Pflugers Arch. 407, 228–234.PubMedCrossRefGoogle Scholar
  26. 26.
    Navar, L. G. (1998) Integrating multiple paracrine regulators of renal microvascular dynamics. Am. J. Physiol. 274, F433–F444.PubMedGoogle Scholar
  27. 27.
    Croft, K. D., McGiff, J. C., Sanchez-Mendoza, A., and Carroll, M. A. (2000) Angiotensin II releases 20-HETE from rat renal microvessels. Am. J. Physiol. 279, F544–F551.Google Scholar
  28. 28.
    Imig, J. D., Zou, A. P., Stec, D. E., Harder, D. R., Falck, J. R., and Roman, R. J. (1996) Formation and actions of 20-hydroxyeicosatetraenoic acid in rat renal arterioles. Am. J. Physiol. 270, R217–R227.PubMedGoogle Scholar
  29. 29.
    Carroll, M. A., Balazy, M., Huang, D. D., Rybalova, S., Falck, J. R., and McGiff, J. C. (1997) Cytochrome P450-derived renal HETEs: storage and release. Kidney Int. 51, 1696–1702.PubMedCrossRefGoogle Scholar
  30. 30.
    McGiff, J. C. and Carroll, M. A. (1987) Cytochrome P-450-related arachidonic acid metabolites. Am. Rev. Respir. Dis. 136, 488–491.PubMedGoogle Scholar
  31. 31.
    Morrison, A. R. and Pascoe, N. (1981) Metabolism of arachidonate through NADPH-dependent oxygenase of renal cortex. Proc. Natl. Acad. Sci. USA 78, 7375–7378.PubMedCrossRefGoogle Scholar
  32. 32.
    McGiff, J. C. (1991) Cytochrome P-450 metabolism of arachidonic acid. Annu. Rev. Pharmacol. Toxicol. 31, 339–369.PubMedCrossRefGoogle Scholar
  33. 33.
    Schwartzman, M. L. and McGiff, J. C. (1995) Renal cytochrome P450. J. Lipid Mediat. Cell Signal. 12, 229–242.PubMedCrossRefGoogle Scholar
  34. 34.
    Tobian, L. (1987) Does essential hypertension lead to renal failure? Am. J. Cardiol. 60, 42I–46I.PubMedCrossRefGoogle Scholar
  35. 35.
    Chatziantoniou, C. and Arendshorst, W. J. (1993) Angiotensin receptor sites in renal vasculature of rats developing genetic hypertension. Am. J. Physiol. 265, F853–F862.PubMedGoogle Scholar
  36. 36.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  37. 37.
    Brezis, M., Rosen, S., Silva, P., and Epstein, F. H. (1984) Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J. Clin. Invest. 73, 182–190.PubMedCrossRefGoogle Scholar
  38. 38.
    Escalante, B. A., Ferreri, N. R., Dunn, C. E., and McGiff, J. C. (1994) Cytokines affect ion transport in primary cultured thick ascending limb of Henle’s loop cells. Am. J. Physiol. 266, C1568–C1576.PubMedGoogle Scholar
  39. 39.
    Macica, C., Escalante, B. A., Conners, M. S., and Ferreri, N. R. (1994) TNF production by the medullary thick ascending limb of Henle’s loop. Kidney Int. 46, 113–121.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Mairead A. Carroll
    • 1
  • John C. McGiff
    • 1
  • Nicholas R. Ferreri
    • 1
  1. 1.Department of PharmacologyNew York Medical CollegeValhalla

Personalised recommendations