Renal Disease pp 237-255 | Cite as

Laser-Capture Microdissection

  • Laura Barisoni
  • Robert A. Star
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 86)


The kidney is an anatomically complex organ with exceptional cellular heterogeneity. Our understanding of renal physiology has been advanced by studies of hand-dissected individual tubules (microdissection). Glomeruli or renal tubules are dissected away from surrounding structures, and subjected to microassays for enzymatic activity and receptor function, in vitro micro-perfusion for transport rates, and single-tubule reverse transcriptase-polymerase chain reaction (RT-PCR) (1). Thus, microdissection methods have allowed assay of activity and mRNA and protein expression in single-nephron segments in normal or uninjured kidneys. Renal disease may be global, but more typically involves selective injury to the glomerulus, portions of the nephron, interstitium, or blood vessels. Less is known about renal pathophysiology and the nephron-specific response to injury. For example, how do different portions of the nephron interact during renal injury? Why are some renal diseases focal? How do individual glomeruli react in focal semental glomerulo-sclerosis (FSGS)? Does the interaction tend to propagate or to defend against further injury? Microdissection techniques have not been widely used to study renal injury because microdissection is often limited by tissue necrosis or fibrosis. In addition, the time required for microdissection often exceeds the time-course of rapid and transient changes in a cellular response such as certain metabolic intermediates or early-response genes.


Transfer Film Proximal Convoluted Tubule Ethylene Vinyl Acetate Proximal Straight Tubule Microdissection Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Moriyama, T., Murphy, H. R., Martin, B. M., and Garcia-Perez, A. (1990) Detection of specific mRNAs in single nephron segments by use of the polymerase chain reaction. Am. J. Physiol. 258, F1470–F1474.PubMedGoogle Scholar
  2. 2.
    Whetsell, L., Maw, G., Nadon, N., Ringer, D. P., and Schaefer, F. V. (1992) Polymerase chain reaction microanalysis of tumors from stained histological slides. Oncogene 7, 2355–2361.PubMedGoogle Scholar
  3. 3.
    Bonner, R. F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S., et al. (1997) Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483.PubMedCrossRefGoogle Scholar
  4. 4.
    Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R., et al. (1996) Laser capture microdissection. Science 274, 998–1001.PubMedCrossRefGoogle Scholar
  5. 5.
    Simone, N. L., Bonner, R. F., Gillespie, J. W., Emmert-Buck, M. R., and Liotta, L. A. (1998) Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14, 272–276.PubMedCrossRefGoogle Scholar
  6. 6.
    Liotta, L. A. and Kohn, E. C. (2001) The microenvironment of the tumour-host interface. Nature 411, 375–379.PubMedCrossRefGoogle Scholar
  7. 7.
    Kohda, Y., Murakami, H., Moe, O. W., and Star, R. A. (2000) Analysis of segmental renal gene expression by laser capture microdissection. Kidney Int. 57, 321–331.PubMedCrossRefGoogle Scholar
  8. 8.
    Banks, R. E., Dunn, M. J., Forbes, M. A., Stanley, A., Pappin, D., Naven, T., et al. (1999) The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis—Preliminary findings. Electrophoresis 20, 689–700.PubMedCrossRefGoogle Scholar
  9. 9.
    Fend, F., Emmert-Buck, M. R., Chuaqui, R., Cole, K., Lee, J., Liotta, L. A., et al. (1999) Laser capture microdissection of immunostained frozen sections for mRNA analysis. Am. J. Pathol. 154, 61–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Goldsworthy, S. M., Stockton, P. S., Trempus, C. S., Foley, J. F., and Maronpot, R. R. (1999) Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol. Carcinog. 25, 86–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Tanji, N., Ross, M. D., Cara, A., Markowitz, G. S., Klotman, P. E., and D’agati, V. D. (2001) Effect of tissue processing on the ability to recover nucleic acid from specific renal tissue compartments by laser capture microdissection. Exp. Nephrol. 9, 229–234.PubMedCrossRefGoogle Scholar
  12. 12.
    Parlato, R., Rosica, A., Cuccurullo, V., Mansi, L., Macchia, P., Owens, J. D., et al. (2002) A preservation method that allows recovery of intact RNA from tissues dissected by laser capture microdissection. Anal. Biochem. 300, 139–145.PubMedCrossRefGoogle Scholar
  13. 13.
    Jin, L., Thompson, C. A., Qian, X., Kuecker, S. J., Kulig, E., and Lloyd, R. V. (1999) Analysis of anterior pituitary hormone mRNA expression in immunophenotypically characterized single cells after laser capture microdissection. Lab. Investig. 79, 511–512.PubMedGoogle Scholar
  14. 14.
    Craven, R. A., Totty, N., Harnden, P., Selby, P. J., and Banks, R. E. (2002) Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis: evaluation of tissue preparation and sample limitations. Am. J. Pathol. 160, 815–822.PubMedCrossRefGoogle Scholar
  15. 15.
    To, M. D., Done, S. J., Redston, M., and Andrulis, I. L. (1998) Analysis of mRNA from microdissected frozen tissue sections without RNA isolation. Am. J. Pathol. 153, 47–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Darling, T. N., Yee, C., Bauer, J. W., Hintner, H., and Yancey, K. B. (1999) Revertant mosaicism: partial correction of a germ-line mutation in COL17A1 by a frame-restoring mutation. J. Clin. Investig. 103, 1371–1377.PubMedCrossRefGoogle Scholar
  17. 17.
    Knezevic, V., Leethanakul, C., Bichsel, V. E., Worth, J. M., Prabhu, V. V., Gutkind, J. S., et al. (2001) Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1, 1271–1278.PubMedCrossRefGoogle Scholar
  18. 18.
    Craven, R. A. and Banks, R. E. (2001) Laser capture microdissection and proteomics: possibilities and limitation. Proteomics 1, 1200–1204.PubMedCrossRefGoogle Scholar
  19. 19.
    Luo, L., Salunga, R. C., Guo, H., Bittner, A., Joy, K. C., Galindo, J. E., et al. (1999) Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat. Med. 5, 117–122.PubMedCrossRefGoogle Scholar
  20. 20.
    Wong, M. H., Saam, J. R., Stappenbeck, T. S., Rexer, C. H., and Gordon, J. I. (2000) Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc. Natl. Acad. Sci. USA 97, 12,601–12,606.PubMedCrossRefGoogle Scholar
  21. 21.
    Murakami, H., Liotta, L., and Star, R. A. (2000) IF-LCM: laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney Int. 58, 1346–1353.PubMedCrossRefGoogle Scholar
  22. 22.
    Fend, F., Quintanilla-Martinez, L., Kumar, S., Beaty, M. W., Blum, L., Sorbara, L., et al. (1999) Composite low grade B-cell lymphomas with two immunophenotypically distinct cell populations are true biclonal lymphomas—A molecular analysis using laser capture microdissection. Am. J. Pathol. 154, 1857–1866.PubMedCrossRefGoogle Scholar
  23. 23.
    Specht, K., Richter, T., Muller, U., Walch, A., Werner, M., and Hofler, H. (2001) Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am. J. Pathol. 158, 419–429.PubMedCrossRefGoogle Scholar
  24. 24.
    Cohen, C. D., Frach, K., Schlondorff, D., and Kretzler, M. (2001) Quantitative gene expression analysis in renal biopsies: a novel protocol for multicenter applications. J. Am. Soc. Neph. 12, 674A. (abstract)Google Scholar
  25. 25.
    Cohen, C. D., Grone, H. J., Grone, E., Nelson, P. J., Schlondorff, D., and Kretzler, M. (2001) Laser microdissection and gene expression analysis on formaldehyde-fixed tissue: IP-10 and RANTES in renal allograft rejection. J. Am. Soc. Neph. 12, 674A. (abstract)Google Scholar
  26. 26.
    Gillespie, J. W., Best, C. J., Bichsel, V. E., Cole, K. A., Greenhut, S. F., Hewitt, S. M., et al. (2002) Evaluation of non-formalin tissue fixation for molecular profiling studies. Am. J. Pathol. 160, 449–457.PubMedCrossRefGoogle Scholar
  27. 27.
    Fend, F. and Raffeld, M. (2000) Laser capture microdissection in pathology. J. Clin. Pathol. 53, 666–672.PubMedCrossRefGoogle Scholar
  28. 28.
    Bernsen, M. R., Dijkman, H. B., de Vries, E., Figdor, C. G., Ruiter, D. J., Adema, G. J., et al. (1998) Identification of multiple mRNA and DNA sequences from small tissue samples isolated by laser-assisted microdissection. Lab. Investig. 78, 1267–1273.PubMedGoogle Scholar
  29. 29.
    Nagasawa, Y., Takenaka, M., Matsuoka, Y., Imai, E., and Hori, M. (2000) Quantitation of mRNA expression in glomeruli using laser-manipulated microdissection and laser pressure catapulting. Kidney Int. 57, 717–723.PubMedCrossRefGoogle Scholar
  30. 30.
    Sgroi, D. C., Teng, S., Robinson, G., LeVangie, R., Hudson, J. R., Jr., and Elkahloun, A. G. (1999) In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 59, 5656–5661.PubMedGoogle Scholar
  31. 31.
    Krizman, D. B., Chuaqui, R. F., Meltzer, P. S., Trent, J. M., Duray, P. H., Linehan, W. M., et al. (1996) Construction of a representative cDNA library from prostatic intraepithelial neoplasia. Cancer Res. 56, 5380–5383.PubMedGoogle Scholar
  32. 32.
    Emmert-Buck, M. R., Strausberg, R. L., Krizman, D. B., Bonaldo, M. F., Bonner, R. F., Bostwick, D. G., et al. (2000) Molecular profiling of clinical tissue specimens: feasibility and applications. Am. J. Pathol. 156, 1109–1115.PubMedCrossRefGoogle Scholar
  33. 33.
    Ahram, M., Best, C. J., Flaig, M. J., Gillespie, J. W., Leiva, I. M., Chuaqui, R. F., et al. (2002) Proteomic analysis of human prostate cancer. Mol. Carcinog. 33, 9–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Emmert-Buck, M. R., Gillespie, J. W., Paweletz, C. P., Ornstein, D. K., Basrur, V., Appella, E., et al. (2000) An approach to proteomic analysis of human tumors. Mol. Carcinog. 27, 158–165.PubMedCrossRefGoogle Scholar
  35. 35.
    Ornstein, D. K., Englert, C., Gillespie, J. W., Paweletz, C. P., Linehan, W. M., Emmert-Buck, M. R., et al. (2000) Characterization of intracellular prostate-specific antigen from laser capture microdissected benign and malignant prostatic epithelium. Clin. Cancer Res. 6, 353–356.PubMedGoogle Scholar
  36. 36.
    Paweletz, C. P., Ornstein, D. K., Roth, M. J., Bichsel, V. E., Gillespie, J. W., Calvert, V. S., et al. (2000) Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res. 60, 6293–6297.PubMedGoogle Scholar
  37. 37.
    Paweletz, C. P., Liotta, L. A., and Petricoin, E. F., III (2001) New technologies for biomarker analysis of prostate cancer progression: Laser capture microdissection and tissue proteomics. Urology 57, 160–163.PubMedCrossRefGoogle Scholar
  38. 38.
    Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W., et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989.PubMedCrossRefGoogle Scholar
  39. 39.
    DiFrancesco, L. M., Murthy, S. K., Luider, J., and Demetrick, D. J. (2000) Laser capture microdissection-guided fluorescence in situ hybridization and flow cytometric cell cycle analysis of purified nuclei from paraffin sections. Mod. Pathol. 13, 705–711.PubMedCrossRefGoogle Scholar
  40. 40.
    Moch, H., Schraml, P., Bubendorf, L., Mirlacher, M., Kononen, J., Gasser, T., et al. (1999) High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am. J. Pathol. 154, 981–986.PubMedCrossRefGoogle Scholar
  41. 41.
    Hooper, L. V., Wong, M. H., Thelin, A., Hansson, L., Falk, P. G., and Gordon, J. I. (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884.PubMedCrossRefGoogle Scholar
  42. 42.
    Sugiyama, Y., Sugiyama, K., Hirai, Y., Akiyama, F., and Hasumi, K. (2002) Microdissection is essential for gene expression profiling of clinically resected cancer tissues. Am. J. Clin. Pathol. 117, 109–116.PubMedCrossRefGoogle Scholar
  43. 43.
    Simone, N. L., Remaley, A. T., Charboneau, L., Petricoin, E. F., III, Glickman, J. W., Emmert-Buck, M. R., et al. (2000) Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am. J. Pathol. 156, 445–452.PubMedCrossRefGoogle Scholar
  44. 44.
    Miyaji, T., Hewitt, S. M., Liotta, L., and Star, R. A. (2002) Liquid protein arrays. Proteomics 2, 1489–1493.PubMedCrossRefGoogle Scholar
  45. 45.
    Ornstein, D. K., Gillespie, J. W., Paweletz, C. P., Duray, P. H., Herring, J., Vocke, C. D., et al. (2000) Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines [In Process Citation]. Electrophoresis 21, 2235–2242.PubMedCrossRefGoogle Scholar
  46. 46.
    Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577.PubMedCrossRefGoogle Scholar
  47. 47.
    Maitra, A., Wistuba, I. I., Virmani, A. K., Sakaguchi, M., Park, I., Stucky, A., et al. (1999) Enrichment of epithelial cells for molecular studies. Nat. Med. 5, 459–463.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Laura Barisoni
    • 1
  • Robert A. Star
    • 1
  1. 1.National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesda

Personalised recommendations