PCR Protocols pp 117-122 | Cite as

Randomly Amplified Polymorphic DNA Fingerprinting

The Basics
  • Ranil S. Dassanayake
  • Lakshman P. Samaranayake
Part of the Methods in Molecular Biology™ book series (MIMB, volume 226)

Abastract

The study of genetic polymorphism among diverse populations of organisms is a complex task. However, this can be accomplished by using newer tools, such as randomly amplified polymorphic DNA (RAPD). RAPD is a polymerase chain reaction (PCR) technique that relies on the generation of amplification products for a given nucleic acid using an amplification-based scanning technique driven by arbitrary priming oligonucleotides. The result is the generation of amplification products (amplicons) that represent a multiplicity of anonymous sites that are characteristic of the studied genome (Fig. 1 A,B).

Keywords

Sugar Sucrose Magnesium Phenol EDTA 

References

  1. 1.
    Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535.PubMedCrossRefGoogle Scholar
  2. 2.
    Caetano-Anolles, G., Bassam, B. J., and Gresshoff, P. M. (1992). Primer-template interactions during DNA amplification fingerprinting with single arbitrary oligonucleotides. Mol. Gene Genet. 235, 157–165.CrossRefGoogle Scholar
  3. 3.
    Caetano-Anolles, G. and Gresshoff, P. M. (1994). DNA amplification fingerprinting using arbitrary mini-hairpin oligonucleotide primers. Biotechnology (NY) 12, 619–623.CrossRefGoogle Scholar
  4. 4.
    Penner, G. A., Bush, A., Wise, R., Kim, W., Domier, L., Kasha, K., et al. (1993) Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods Appl. 2, 341–345.PubMedGoogle Scholar
  5. 5.
    Kubelik, A. R. and Szabo, L. J. (1995). High-GC primers are useful in RAPD analysis of fungi. Curr. Genet. 28, 384–389.PubMedCrossRefGoogle Scholar
  6. 6.
    Ellsworth, D. L., Rittenhouse, K. D., and Honeycutt, R. L. (1993) Artifactual variation in randomly amplified polymorphic DNA banding patterns. BioTechniques 14, 214–217.PubMedGoogle Scholar
  7. 7.
    Meunier, J. R. and Grimont, P. A. (1993). Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res. Microbiol. 144, 373–379.PubMedCrossRefGoogle Scholar
  8. 8.
    Burt, A., Carter, D. A., Koenig, G. L., White, T. J., and Taylor, J. W. (1996) Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc. Natl. Acad. Sci. USA 93, 770–773.PubMedCrossRefGoogle Scholar
  9. 9.
    Graser, Y., Volovsek, M., Arrington, J., Schonian, G., Presber, W., Mitchell, T. G., et al. (1996) Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl. Acad. Sci. USA 93, 12,473–12,477.PubMedCrossRefGoogle Scholar
  10. 10.
    Mondon, P., Brenier, M. P., Symoens, F., Rodriguez, E., Coursange, E., Chaib, F., et al. (1997) Molecular typing of Aspergillus fumigatus strains by sequence-specifc DNA primer (SSDP) analysis. FEMS Immunol. Med. Microbiol. 17, 95–102.PubMedCrossRefGoogle Scholar
  11. 11.
    Weaver, K. R., Caetano-Anolles, G., Gresshoff, P. M., and Callahan, L. M. (1994) Isolation and cloning of DNA amplification products from silver-stained polyacrylamide gels. BioTechniques 16, 226–227.PubMedGoogle Scholar
  12. 12.
    Blanchard, M. M., Taillon-Miller, P., Nowotny, P., and Nowotny, V. (1993) PCR buffer optimization with uniform temperature regimen to facilitate automation. PCR Methods Appl. 2, 234–240.PubMedGoogle Scholar
  13. 13.
    Bej, A. K., Mahbubani, M. H., Boyce, M. J., and Atlas, R. M. (1994). Detection of Salmonella spp. in oysters by PCR. Appl. Environ. Microbiol. 60, 368–373.PubMedGoogle Scholar
  14. 14.
    Bassam, B. J., Caetano-Anolles, G., and Gresshoff, P. M. (1992) DNA amplification fingerprinting of bacteria. Appl. Microbiol. Biotechnol. 38, 70–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Schierwater, B. and Ender, A. (1993) Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res. 21, 4647–4648.PubMedCrossRefGoogle Scholar
  16. 16.
    Saiki, R. K. (1989) The design and optimization of the PCR, in PCR Technology: Principles and Applications for DNA Amplification. (Erlich, H. A., ed.), Stockton Press, New York, pp. 7–16.Google Scholar
  17. 17.
    Yu, K. and Pauls, K. P. (1992) Optimization of the PCR program for RAPD analysis. Nucleic Acids Res. 20, 2606.PubMedCrossRefGoogle Scholar
  18. 18.
    Dassanayake, R. S. and Samaranayake, L. P. (2000). Characterization of the genetic diversity in superficial and systemic human isolates of candida parapsilos by randomly amplified polymorphic DNA (RAPD). APMIS 108, 153–160.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Ranil S. Dassanayake
    • 1
  • Lakshman P. Samaranayake
    • 2
  1. 1.Faculty of Medicine, Department of Biochemistry and Molecular BiologyUniversity of ColomboSri Lanka
  2. 2.Oral Bio-Sciences, Faculty of DentistryThe University of Hong KongHong Kong, China

Personalised recommendations