Overview of Novel Anticancer Drug Targets

  • John K. Buolamwini
  • Haregewein Assefa
Part of the Methods in Molecular Medicine book series (MIMM, volume 85)


There has been an explosion in the number of potential molecular targets that can be explored for selective cancer treatment. The stage is now set to translate years of productive cancer research into more patient-friendly anticancer therapeutics. At present, the challenge is how to identify bonafide and viable targets and efficiently exploit these for the development of selective nontoxic cancer therapies, to overcome the major drawbacks of onventional cytotoxic cancer chemotherapy. To this end, it is gratifying that the selective inhibition of some of these novel targets, especially those in mitogenic signal transduction pathways like HER-2 and bcr-abl tyrosine kinases, has resulted in successful treatments of cancer patients. HER-2 is targeted by the antibody traszumamab (Herceptin®), approved for the treatment of metastatic breast cancer (1), while bcr-abl tyrosine kinase is targeted by the small molecule drug STI571 (Imatinib, Gleevec), for the treatment of chronic myelogenous leukemia (CML) (2). Other promising therapies targeted to other signal transduction targets are in the pipeline, the most advanced probably being small molecules targeted to the epidermal growth factor receptor (EGFR) tyrosine kinase (3). This chapter will provide a broad overview of a wide range of emerging molecular targets, highlighting some of the strategies used to exploit them for molecularly-targeted cancer therapy, such as small molecules, antibodies, and antisense oligonucleotides.


Epidermal Growth Factor Receptor Small Molecule Inhibitor Growth Factor Receptor Tyrosine Kinase MDM2 Protein Amino Terminal Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shak, S. (1999) Overview of the trastuzumab (Herceptin) anti-HER-2 monoclonal antibody clinical programme in HER-2 overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin. Oncol. 26, 71–77.PubMedGoogle Scholar
  2. 2.
    Druker, B. J. (2002) STI571 (Gleevec™) as a paradigm for cancer therapy. Trend. Mol. Med. 8(Issue 4 Suppl), S14–S18.CrossRefGoogle Scholar
  3. 3.
    de Bono, J. S. and Rowinsky, E. K. (2002) The ErbB receptor family: a therapeutic target for cancer. Trend. Mol. Med. 8(Issue 4 Suppl), S19–S26.CrossRefGoogle Scholar
  4. 4.
    Workman, P. (1994) The Potential for molecular oncology to define new drug targets, in New Molecular Targets for Cancer Chemotherapy (Kerr, D. J. and Workman, P., eds.), CRC Press, Boca Raton, FL, pp. 1–44.Google Scholar
  5. 5.
    Karp, J. E. and Broder, S. (1995) Molecular foundations of cancer: new targets for intervention. Nat. Med. 1, 309–320.PubMedCrossRefGoogle Scholar
  6. 6.
    Oliff, A., Gibbs, J. B., and McCormick, F. (1996) New molecular targets for cancer therapy. Sci. Am. 275, 144–149.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuwano, N. (1997) Novel molecular targets for anticancer drugs. Jpn. J. Cancer Chemother. 24, 2187–2189.Google Scholar
  8. 8.
    Aszalos, A. and Eckhardt, S. (1997) Molecular events as targets of anticancer drug therapy. Path. Oncol. Res. 3, 147–158.CrossRefGoogle Scholar
  9. 9.
    Seymore, L. (1999) Novel anti-cancer agents in development: exciting prospects and new challenges. Cancer Treat. Rev. 25, 301–312.CrossRefGoogle Scholar
  10. 10.
    Buolamwini, J. K. (1999) Novel anticancer drug discovery. Curr. Opin. Chem. Biol. 3, 500–509.PubMedCrossRefGoogle Scholar
  11. 11.
    Buolamwini, J. K. (2002) Novel molecular targets for cancer drug discovery. In The Molecular Basis of Human Cancer (Coleman, W. B. and Tsongalis, G. J., eds.), Humana Press, Totowa, NJ, pp. 521–540.Google Scholar
  12. 12.
    Hunter, T. (1997) Oncoprotein networks. Cell 88, 573–582.CrossRefGoogle Scholar
  13. 13.
    Weinberg, R. A. (1991) Tumor suppressor genes. Science 254, 1138–1146.PubMedCrossRefGoogle Scholar
  14. 14.
    Hanahan, D. and Weinberg, A. (2000) The hallmarks of cancer. Cell 100, 57–70.PubMedCrossRefGoogle Scholar
  15. 15.
    White, E. (1996) Life, death and the pursuit of apoptosis. Genes Dev. 10, 1–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Jurcic, J. G., Scheinberg, D. A., and Houghton, A. N. (1997) Monoclonal antibody therapy of cancer. Cancer Chemother. Biol. Response Modif. 17, 195–216.PubMedGoogle Scholar
  17. 17.
    Wang, H., Prasad, G., Buolamwini, J. K., and Zhang, R. (2001) Antisense anticancer oligonucleotide therapeutics. Curr. Cancer Drug Targets 1, 177–196.PubMedCrossRefGoogle Scholar
  18. 18.
    Chong, C. and Vile, R. (1997) Gene therapy for cancer. Drugs Future 22, 857–874.Google Scholar
  19. 19.
    Gomez-Navarro, J., Bilbao, G., and Curiel, D. T. (2002) Gene therapy in the treatment of human cancer. In The Molecular Basis of Human Cancer (Coleman, W. B. and Tsongalis, G. J., eds.), Humana Press, Totowa, NJ, pp. 541–565.Google Scholar
  20. 20.
    Adjei, A. A. (2000) Signal transduction pathway targets for anticancer drug discovery. Curr. Pharm. Des. 6, 361–378.PubMedCrossRefGoogle Scholar
  21. 21.
    Ullrich, A. and Schlessinger, J. (1991) Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212.CrossRefGoogle Scholar
  22. 22.
    Sauseville, E. A. and Longo, D. L. (1994) Growth factors and growth factor inhibitors. In Cancer Therapeutics: Experimental and Clinical Agents (Teicher, B., ed.), Humana Press, Totowa, NJ, pp. 337–370.Google Scholar
  23. 23.
    Gishizky, M. L. (1995) Tyrosine kinase induced mitogenesis. Breaking the link with cancer. Ann. Rep. Med. Chem. 30, 247–253.CrossRefGoogle Scholar
  24. 24.
    Katz, M. E. and McCormick, F. (1997) Signal transduction from multiple ras effectors. Curr. Opin. Genet. Dev. 7, 75–79.PubMedCrossRefGoogle Scholar
  25. 25.
    Marais, R., Light, Y., Mason, C., Paterson, H., Olson, M. F., and Marshall, C. J. (1998) Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science 280, 109–112.PubMedCrossRefGoogle Scholar
  26. 26.
    Olson, M. F., Paterson, H. F., and Marshall, C. J. (1998) Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394, 295–299.PubMedCrossRefGoogle Scholar
  27. 27.
    Fantl, W. J., Johnson, D. E., and Williams, L. T. (1993) Signalling by receptor tyrosine kinases. Ann. Rev. Biochem. 62, 453–481.PubMedGoogle Scholar
  28. 28.
    Kolibaba, K. S. and Druker, B. J. (1997) Protein tyrosine kinases and cancer. Biochim. Biophys. Acta 1333, F217–F248.PubMedGoogle Scholar
  29. 29.
    Lofts, F. J. and Gullick, W. J. (1994) Growth factor receptors as targets. In New Molecular Targets for Cancer Chemotherapy (Kerr, D. J. and Workman, P., eds.), CRC Press, Boca Raton, FL, pp. 45–66.Google Scholar
  30. 30.
    Levitzki, A. (1994) Protein tyrosine kinase inhibitors. In New Molecular Targets for Cancer Chemotherapy (Kerr, D. J. and Workman, P., eds.), CRC Press, Boca Raton, FL, pp. 67–79.Google Scholar
  31. 31.
    Levitzki, A. and Gazit A. (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788.PubMedCrossRefGoogle Scholar
  32. 32.
    Burke, T. R. (1992) Protein tyrosine kinase inhibitors. Drugs Future 17, 119–131.Google Scholar
  33. 33.
    Zwick, E., Bange, J., and Ullrich, A. (2002) Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol. Med. 8, 17–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Fry, D. W. (1996) Recent advances in tyrosine kinase inhibitors. Ann. Rep. Med. Chem. 31, 151–160.CrossRefGoogle Scholar
  35. 35.
    Traxler, P. and Lydon, N. (1995) Recent advances in protein tyrosine kinase inhibitors. Drugs Future 20, 1261–1274.Google Scholar
  36. 36.
    Traxler, P., Furet, P., Met, H., Buchdunger, E., Meyer, T., and Lydon, N. (1997) Design and synthesis of novel tyrosine kinase inhibitors using a pharmacophore model of the ATP-binding site of the EGF-R. J. Pharm. Belg. 52, 88–96.PubMedGoogle Scholar
  37. 37.
    Fry, D. W., Kraker, A. J., Connors, R. C., et al. (1994) Strategies for the discovery of novel tyrosine kinase inhibitors with anticancer activity. Anti-Cancer Drug Design 9, 331–351.PubMedGoogle Scholar
  38. 38.
    Aaronson, S. A. (1991) Growth factors and cancer. Science 254, 1146–1152.PubMedCrossRefGoogle Scholar
  39. 39.
    Tzahar, E. and Yarden, Y. (1998) The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim. Biophys. Acta 1377, M25–M37.PubMedGoogle Scholar
  40. 40.
    Yaish, P., Gazit, A., Gilom, C., and Levitzki, A. (1988) Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 242, 933–935.PubMedCrossRefGoogle Scholar
  41. 41.
    Slamon, D. J., Leyland-Jones, B., Shak, S., et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792.PubMedCrossRefGoogle Scholar
  42. 42.
    Baselga, J. (2001). The EGFR as a target for anticancer therapy: focus on Cetuxumab. Eur. J. Cancer 37, S16–S22.PubMedCrossRefGoogle Scholar
  43. 43.
    Miller, P., DiOrio, C., Moyer, M., et al. (1994) Depletion of the erbB-2 gene product p185 by the benzoquinone ansamycins. Cancer Res. 54, 2724–2730.PubMedGoogle Scholar
  44. 44.
    Neckers, L. (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trend. Mol. Med. 8(Issue 4 Suppl), S55–S61.CrossRefGoogle Scholar
  45. 45.
    Heldin, C.-H., Ostman, A., and Ronnstrand, L. (1998) Signal transduction via platelet-derived growth factor receptors. Biochim. Biophys. Acta 1378, F79–F113.PubMedGoogle Scholar
  46. 46.
    Hanahan, D. (1997) Signaling vascular morphogenesis and maintenance. Science 277, 48–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671–674.PubMedCrossRefGoogle Scholar
  48. 48.
    Powell, D., Skotnicki, J., and Upeslacis, J. (1997) Angiogenesis inhibitors. Ann. Rep. Med. Chem. 32, 161–170.CrossRefGoogle Scholar
  49. 49.
    Kubo, H., Fujiwara, T., Jussila, L., et al. (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96, 546–553.PubMedGoogle Scholar
  50. 50.
    Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447.PubMedCrossRefGoogle Scholar
  51. 51.
    Shaulian, E., Resnitzky, D., Shifman, O., et al. (1997) Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene 15, 2717–2725.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhu, Z., Bohlen, P., and Witte, L. (2002) Clinical development of angiogenesis inhibitors to vascular endothelial growth factor and its receptors as cancer therapeutics. Curr. Cancer Drug Targets 2, 135–156.PubMedCrossRefGoogle Scholar
  53. 53.
    Fong, T. A., Shawver, L. K., Sun, L., et al. (1999) SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 59, 99–106.PubMedGoogle Scholar
  54. 54.
    Fry, D. W. and Nelson, J. M. (1995) Inhibition of fibroblast growth factor-mediated tyrosine phosphorylation and protein synthesis by PD 145709, a member of the 2-thioindole class of tyrosine kinase inhibitors. Anti-Cancer Drug Design 10, 604–622.Google Scholar
  55. 55.
    Mohammadi, M., McMahon, G., Sun, L., et al. (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955–960.PubMedCrossRefGoogle Scholar
  56. 56.
    Shawver, L. K., Schwartz, D. P., Mann, E., et al. (1997) Inhibition of platelet-derived growth factor-mediated signal transduction and tumor growth by N-[4-(trifluoromethyl)phenyl]-5-methylisoxazole-4-carboxamide. Clin. Cancer Res. 3, 1167–1177.PubMedGoogle Scholar
  57. 57.
    Mullins, D. E., Hamud, F., Reim, R., and Davis, H. R. (1994) Inhibition of PDGF receptor binding and PDGF-stimulated biological activity in vitro and of intimal lesion formation in vivo by 2-bromomethyl-5-chlorobenzene sulfonylphthalimide. Arterioscler. Thromb. 14, 1047–1055.PubMedGoogle Scholar
  58. 58.
    Hirota, S., Isozaki, K., Moriyama, Y., et al. (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580.PubMedCrossRefGoogle Scholar
  59. 59.
    O’Dwyer, M. E. and Druker, B. J. (2001) The role of the tyrosine kinase inhibitor STI571 in the treatment of cancer. Curr. Cancer Drug Targets 1, 49–57.CrossRefGoogle Scholar
  60. 60.
    Lutz, M.P., Eber, I. B. S., Flossmann-Kast, B. B. M., et al. (1998) Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem. Biophys. Res. Commun. 243, 503–508.PubMedCrossRefGoogle Scholar
  61. 61.
    Bolen, J. B. and Veillet A. A. (1989) Function for the lck proto-oncogene. Trends Biochem. Sci. 14, 404–407.PubMedCrossRefGoogle Scholar
  62. 62.
    Cheung, R. K. and Dosch, H. M. (1991) The tyrosine kinase lck is critically involved in the growth transformation of human B lymphocytes. J. Biol. Chem. 266, 8667–8670.PubMedGoogle Scholar
  63. 63.
    Klutchko, S. R., Hamby, J. M., Boschelli, D. H., et al. (1998) 2-Substituted aminopyrido[2,3-d]pyrimidin-7(8H)-ones. Structure-activity relationships against selected tyrosine kinases and in vitro and in vivo anticancer activity. J. Med. Chem. 41, 3276–3292.PubMedCrossRefGoogle Scholar
  64. 64.
    Lunney, E. A., Para, K. S., Rubin, J. R., et al. (1997) Structure-based design of a novel series of ligands that bind to the pp60src SH2 domain. J. Am. Chem. Soc. 119, 12,471–12,476.CrossRefGoogle Scholar
  65. 65.
    Buchdunger, E., Zimmerman, J., Mett, H., et al. (1996) Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104.PubMedGoogle Scholar
  66. 66.
    Heinrich, M. C., Griffith, D. J., Druker, B. J., Wait, C. K., Ott, K. A., and Zigler, A. J. (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96, 925–932.PubMedGoogle Scholar
  67. 67.
    Lee, J. C. and Adams, J. L. (1995) Inhibitors of serine/threonine kinases. Curr. Opin. Biotech. 6, 657–661.PubMedCrossRefGoogle Scholar
  68. 68.
    Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y. (1982) Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257, 7847–7851.PubMedGoogle Scholar
  69. 69.
    Niedel, J. E., Kuhn, L. J., and Vandenbank, G. R. (1983) Phorbol diester receptor copurifies with protein kinase C. Proc. Natl. Acad. Sci. USA 80, 36–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Exton, J. H. (1997) Cell signalling through guanine-nucleotide-binding regulatory proteins (G proteins) and phospholipases. Eur. J. Biochem. 243, 10–20.PubMedCrossRefGoogle Scholar
  71. 71.
    Dekker, L. V. and Parker, P. J. (1994) Protein kinase C. A question of specificity. Trends Biochem. Sci. 19, 73–77.PubMedCrossRefGoogle Scholar
  72. 72.
    Grescher, A. and Dale, I. L. (1989) Protein kinase C—a novel target for rational anticancer drug design? Anti-Cancer Drug Design 4, 93–105.Google Scholar
  73. 73.
    Basu, A. (1993) The potential of protein kinase C as a target for anticancer treatment. Pharmac. Ther. 59, 257–280.CrossRefGoogle Scholar
  74. 74.
    Philip, P. A. and Harris A. L. (1995) Potential for protein kinase C inhibitors in cancer therapy. Cancer Treat. Res. 178, 3–27.Google Scholar
  75. 75.
    Schwartz, G. K. (1996) Protein kinase C inhibitors as inducers of apoptosis for cancer treatment. Exp. Opin. Invest. Drugs 5, 1601–1615.CrossRefGoogle Scholar
  76. 76.
    Capronigro, F., French, R. C., and Kaye, S. B. (1997) Protein kinase C: a worthwhile target for anticancer drugs? Anti-Cancer Drugs 8, 26–33.CrossRefGoogle Scholar
  77. 77.
    Goekjian, P. G. and Jirousek, M. R. (2001) Protein kinase C inhibitors as novel anticancer drugs. Expert Opin. Investig. Drugs 10, 2117–2140.PubMedCrossRefGoogle Scholar
  78. 78.
    Hofmann, J. (2002) Modulation of protein kinase C in antitumor treatment. Rev. Physiol. Biochem. Pharmacol. 142, 1–96.CrossRefGoogle Scholar
  79. 79.
    Blobe, G. C., Sachs, C. W., Khan, W. A., et al. (1993) Selective regulation of expression of protein kinase C (PKC) isozymes in multidrug-resistant MCF-7 cells. Functional significance of enhanced expression of PKCα. J. Biol. Chem. 268, 658–664.PubMedGoogle Scholar
  80. 80.
    Gill, P. K., Gescher, A., and Gant, T. W. (2001) Regulation of MDR1 promoter activity in human breast carcinoma cells by protein kinase C isozymes alpha and theta. Eur. J. Biochem. 268, 4151–4157.PubMedCrossRefGoogle Scholar
  81. 81.
    Harris, W., Hill, C. H., Lewis, E. J., Nixon, J. S., and Wilkinson, S. E. (1993) Protein kinase C inhibitors. Drugs Future 18, 727–735.Google Scholar
  82. 82.
    Zimmermann, J., Caravatti, G., Mett, H., et al. (1996) Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and selective inhibitors of protein kinase C (PKC). Arch. Pharm. 329, 371–376.CrossRefGoogle Scholar
  83. 83.
    Wang, S., Milne, G. W. A., Nicklaus, M. C., Marquez, V. E., Lee, J., and Blumberg, P. M. (1994) Protein kinase C. Modeling of the binding site and prediction of binding constants. J. Med. Chem. 37, 1326–1338.PubMedCrossRefGoogle Scholar
  84. 84.
    Wang, S., Zaharevitz, D. W., Sharma, R., et al. (1994) Discovery of novel, structurally diverse protein kinase C agonists through computer 3D-database pharmacophore search. Molecular modeling studies. J. Med. Chem. 37, 4479–4489.PubMedCrossRefGoogle Scholar
  85. 85.
    Qiao, L., Wang, S., George, C., Lewin, L. E., Blumberg, P. M., and Kozikowski, A. P. (1998) Structure-based design of a new class of protein kinase C modulators. J. Am. Chem. Soc. 120, 6629–6630.CrossRefGoogle Scholar
  86. 86.
    Ramage, A. D., Langdon, S. P., Ritchie, A. A., Urns, D. J., and Miller, W. R. (1995) Growth inhibition by 8-chloro-cyclic AMP of human HT29 colorectal and ZR-75-1 breast carcinoma xenografts is associated with selective modulation of protein kinase A isoenzymes. Eur. J. Cancer 31A, 969–973.PubMedCrossRefGoogle Scholar
  87. 87.
    Blume-Jensen, P. and Hunter, T. (2001) Oncogenic kinase signalling. Nature 411, 355–356.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhong, H., Chiles, K, Feldser, D., et al. (2000) Modulation of hypoxia-inducible factor 1-alpha expression by the epidermal growth factor/phosphoinositide-3 kinase/PTEN/AKT/FRAP pathway in human protrate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545.PubMedGoogle Scholar
  89. 89.
    Leslie, L. R. and Downes, P. C. (2002) PTEN: the down side of PI 3-kinase signalling. Cell. Signalling 14, 285–295.PubMedCrossRefGoogle Scholar
  90. 90.
    Stein, B. and Anderson, D. (1996) The MAP kinase family: new “MAPs” for signal transduction pathways targets. Ann. Rep. Med Chem. 31, 289–298.CrossRefGoogle Scholar
  91. 91.
    Lewis, T. S., Shapiro, P. S., and Ahn, N. G. (1998) Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49–139.PubMedCrossRefGoogle Scholar
  92. 92.
    Cobb, M. H. (1999) MAP kinase pathways. Prog. Biophys. Mol. Biol. 71, 479–500.PubMedCrossRefGoogle Scholar
  93. 93.
    Kolch, W. (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351, 289–305.PubMedCrossRefGoogle Scholar
  94. 94.
    Kumar, C. C. and Madison, V. (2001) Drugs targeted against protein kinases. Expert Opin. Emerging Drugs 6, 308–315.CrossRefGoogle Scholar
  95. 95.
    Herrera R. and Sebolt-Leopold J. S. (2002) Unraveling the complexities of the Raf/MAP kinase pathway for pharmacological intervention. Trends Mol. Med. 8(4), S27–S31.PubMedCrossRefGoogle Scholar
  96. 96.
    Sebolt-Leopold, J. S., Dudley, D. T., Herrera, R., et al. (1999) Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med. 5, 810–816.PubMedCrossRefGoogle Scholar
  97. 97.
    Shimamura, A, Ballif, B. A., Richards, S. A., and Blenis, J. (2000) Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr. Biol. 10, 127–135.PubMedCrossRefGoogle Scholar
  98. 98.
    Bonni, A., Brunet, A., West, A. E., Datta, S. R., Takasu, M. A., and Greenberg, M. E. (1999) Cell survival promoted by the Ras-MAPK signalling pathway by transcription-dependent and-independent mechanisms. Science 286, 1358–1362.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang, H. G., Miyashita, T., Takayama, S., et al. (1994) Apoptosis regulation by interaction of Bcl-2 protein and Raf-1 kinase. Oncogene 9, 2751–2756.PubMedGoogle Scholar
  100. 100.
    Pardo, O. E., Arcaro, A., Salerno, G., Raguz, S., Downward, J., and Seckl, M. J. (2002) Fibroblast and growth factor-2 induces translational regulation of Bcl-XL and Bcl-2 via a MEK-dependent pathway. Correlation with resistance to etoposide-induced apoptosis. J. Biol. Chem. 277, 12,040–12,046.PubMedCrossRefGoogle Scholar
  101. 101.
    Zhong, J., Troppmair, J., and Rapp, U. R. (2001) Independent control of cell survival by Raf-1 and Bcl-2 at the mitochondria. Oncogene 20, 4807–4816.PubMedCrossRefGoogle Scholar
  102. 102.
    Chen, J., Fujii, K., Zhang, L., Roberts, T., and Fu, H. (2001) Raf-1 promotes cell survival by antagonizing signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc. Natl. Acad. Sci. USA 98, 7783–7788.PubMedCrossRefGoogle Scholar
  103. 103.
    Monia, B. P. (1997) First-and second-generation antisense inhibitors targeted to human c-raf kinase: in vitro and in vivo studies. Anti-Cancer Drug Design 12, 327–339.PubMedGoogle Scholar
  104. 104.
    Chow, S., Patel, H., and Hedley, D. W. (2001) Measurement of MAP kinase activation by flow cytometry using phospho-specific antibodies to MEK and ERK: potential for pharmacodynamic monitoring of signal transduction inhibitors. Cytometry 46, 72–78.PubMedCrossRefGoogle Scholar
  105. 105.
    Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92, 7686–7689.PubMedCrossRefGoogle Scholar
  106. 106.
    Draetta, G. (1990) Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation. Trends Biol. Sci. 15, 378–383.CrossRefGoogle Scholar
  107. 107.
    Sherr, C. J. (1993) Mammalian G1 cyclins. Cell 73, 1059–1065.PubMedCrossRefGoogle Scholar
  108. 108.
    Coleman, K. G., Lyssikatos, J. P., and Yang, B. V. (1997) Chemical inhibitors of cyclin-dependent kinases. Ann. Rep. Med. Chem. 32, 171–179.CrossRefGoogle Scholar
  109. 109.
    Hunter, T. and Pines, J. (1994) Cyclins and cancer II: cyclin D and CDK inhibitors come of age. Cell 79, 573–582.PubMedCrossRefGoogle Scholar
  110. 110.
    Morgan, D. O. (1995) Principles of CDK regulation. Nature 374, 131–134.PubMedCrossRefGoogle Scholar
  111. 111.
    Lee, M. H., Renisdottir, I., and Massague, J. (1995) Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639–649.PubMedCrossRefGoogle Scholar
  112. 112.
    Sherr, C. J. and Roberts, J. M. (1999) CDK inhibitors, positive and negative regulators of G1-phase progression. Genes Dev. 13, 1505–1512.CrossRefGoogle Scholar
  113. 113.
    Ortega, S., Malumbres, M., and Barbacid, M. (2002) Cyclin-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta 1602, 73–87.PubMedGoogle Scholar
  114. 114.
    Lees, E. M. and Harlow, E. (1995). Cancer and the cell cycle. In Cell Cycle Control (Hutchison, C. and Glover, D. M., eds.), IRL Press, New York, pp. 228–263.Google Scholar
  115. 115.
    Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell 81, 323–330.PubMedCrossRefGoogle Scholar
  116. 116.
    Draetta, G. and Pagano, M. (1996) Cell cycle control and cancer. Ann. Rep. Med. Chem. 31, 241–248.CrossRefGoogle Scholar
  117. 117.
    Imoto, M. (1998) Molecular target therapy of cancer: a. cell cycle. Kagaku Ryo no Ryoiki 14, 13–19.Google Scholar
  118. 118.
    Buolamwini, J. K. (2000) Cell cycle molecular targets in novel anticancer drug discovery. Curr. Pharm. Design 6, 379–392.CrossRefGoogle Scholar
  119. 119.
    Buolamwini, J. K. (2001) Cell cycle molecular targets and drug discovery. In Cell Cycle Checkpoints and Cancer (Blagosklonny, M. V., ed.), Landes Bioscience, Georgetown, TX, pp. 235–246.Google Scholar
  120. 120.
    Sausville, E. A. (2002) Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol. Med. 8(Issue 4 Suppl), S32–S37.PubMedCrossRefGoogle Scholar
  121. 121.
    Hardcastle, I. R., Golding, B. T., and Griffin, R. J. (2002) Designing inhibitors of cyclin-dependent kinases. Annu. Rev. Pharmacol. Toxicol. 42, 325–348.PubMedCrossRefGoogle Scholar
  122. 122.
    Meijer, L. (1996) Chemical inhibitors of cyclin-dependent kinases. Trends Cell Biol. 6, 393–397.PubMedCrossRefGoogle Scholar
  123. 123.
    Carlson, B. A., Dubay, M. M., Sausville, E. A., Brizuella, L., and Worland, P. J. (1996) Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res. 56, 2973–2978.PubMedGoogle Scholar
  124. 124.
    Christain, M. C., Puda, J. M., Ho, P. T. C., Arbuck, S. G., Murgo, A. J., and Sausville E. A. (1997) Promising new agents under development by the division of cancer treatment, diagnosis, and centers of the National Cancer Institute. Semin. Oncol. 24, 219–240.Google Scholar
  125. 125.
    Chao, S.-H. and Price, D. H. (2001) Flavopyridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 276, 31,793–31,799.PubMedCrossRefGoogle Scholar
  126. 126.
    Wang, D., de la Fuente, C., Deng, L., et al. (2001) Inhibition of human immunodeficiency virus type-1 transcription by chemical cyclin-dependent kinase inhibitors. J. Virol. 75, 7266–7279.PubMedCrossRefGoogle Scholar
  127. 127.
    Iseki, H., Ko, T. C., Xue, X. Y., Seapan, A., Hellmich, M. R., and Townsend, C. W. (1997) Cyclin-dependent kinase inhibitors block proliferation of human gastric cancer cells. Surgery 122, 187–194.PubMedCrossRefGoogle Scholar
  128. 128.
    Gray, N. S., Wodika, L., Thunnissen, A.-M. W. H., et al. (1998) Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538.PubMedCrossRefGoogle Scholar
  129. 129.
    Sauseville, E. A., Zaharevitz, D., Gussio, R., et al. (1999) Cyclin-dependent kinases: initial approaches to exploit a novel therapeutic target. Pharmacol. Ther. 82, 285–292.CrossRefGoogle Scholar
  130. 130.
    Hoessel, R., Leclerc, S., Endicott, J. A., et al. (1999) Indirubin, the active constituent of a Chinese antileukemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol. 1, 60–67.PubMedCrossRefGoogle Scholar
  131. 131.
    Toogood, P. (2001) Cyclin-depenent kinase inhibitors for treating cancer. Med. Res. Revs. 21, 487–498.CrossRefGoogle Scholar
  132. 132.
    Wolf, G., Elez, R., Doermer, A., et al. (1997) Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene 14, 543–549.PubMedCrossRefGoogle Scholar
  133. 133.
    Bischoff, J. R., Anderson, L., Zhu, Y., et al. (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17, 3052–3065.PubMedCrossRefGoogle Scholar
  134. 134.
    Graves, P. R., Yu, L., Schwarz, J. K., et al. (2000) The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J. Biol. Chem. 275, 5600–5605.PubMedCrossRefGoogle Scholar
  135. 135.
    Bates, S. and Vousden, K. H. (1996) p53 in signaling checkpoint arrest or apoptosis. Curr. Opin. Genet. Dev. 6, 12–19.PubMedCrossRefGoogle Scholar
  136. 136.
    Galaktionov, K., Lee, A. K., Eckstein, J., et al. (1995) CDC25 phosphatases as potential human oncogenes. Science 269, 1575–1577.PubMedCrossRefGoogle Scholar
  137. 137.
    Ducruet, A. P., Rice, R. L., Tamura, K., et al. (2000) Identification of new Cdc25 dual specificity phosphatase inhibitors in a targeted small molecule array. Bioorg. Med. Chem. 8, 1451–1466.PubMedCrossRefGoogle Scholar
  138. 138.
    Lowenstein, E. J., Daly, R. J., Batzer, A. G., et al. (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70, 431–442.PubMedCrossRefGoogle Scholar
  139. 139.
    Botfield, M. C. and Green, J. (1995) SH2 and SH3 domains: choreographers of multiple signaling pathways. Ann. Rep. Med. Chem. 30, 227–237.CrossRefGoogle Scholar
  140. 140.
    Gishizky, M. L. (1995) Tyrosine kinase induced mitogenesis. Breaking the link with cancer. Ann. Rep. Med. Chem. 30, 247–253.CrossRefGoogle Scholar
  141. 141.
    Mayer, B. J. and Gupta, R (1998) Functions of SH2 and SH3 domains. Curr. Top. Microb. Immunol. 228, 1–22.Google Scholar
  142. 142.
    Bourne, H. R., Sanders, D. A., and McCormic, F. (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132.PubMedCrossRefGoogle Scholar
  143. 143.
    Mulcahy, L. S., Smith, M. R., and Stacey, D. (1985) Requirement for ras proto-oncogene function during serum-stimulated growth in NIH 3T3 cells. Nature 313, 241–243.PubMedCrossRefGoogle Scholar
  144. 144.
    Barbacid, M. (1987) Ras genes. Ann. Rev. Biochem. 56, 779–827.PubMedCrossRefGoogle Scholar
  145. 145.
    Bos, J. L. (1989) Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689.PubMedGoogle Scholar
  146. 146.
    Boriack-Sjodin, P. A., Margait, S. M., Bar-Sagi, D., and Kuriyan, J. (1998) The structural basis of the activation of ras by Sos. Nature 394, 337–343.PubMedCrossRefGoogle Scholar
  147. 147.
    Sebolt-Leopold, J. S. (1994) A case for ras targeted agents as antineoplastics. In Cancer Therapeutics: Experimental and Clinical Agents (Teicher, B., ed.), Humana Press, Totowa, NJ, pp. 395–415.Google Scholar
  148. 148.
    Herrera, R. and Sebolt-Leopold, J. S. (2002) Unraveling the complexities of the Raf/MAP kinase pathway for pharmacological intervention. Trends Mol. Med. 8(Issue 4 Suppl), S27–S31.PubMedCrossRefGoogle Scholar
  149. 149.
    Jackson, J. H., Cochrane, C. G., Bourne, J. R., Solski, P.A., Buss, J. E., and Der, C. J. (1990) Farnesyl modification of Kirsten-ras Exon 4B protein is essential for transformation. Proc. Natl. Acad. Sci. USA 87, 3042–3046.PubMedCrossRefGoogle Scholar
  150. 150.
    Kato, K., Cox, A. D., Hisaka, M. M., Graham, S. M., Buss, J. E., and Der, C. J. (1992) Isoprenoid addition to ras protein is the critical modification for its membrane association and transformation activity. Proc. Natl. Acad. Sci. USA 89, 6403–6407.PubMedCrossRefGoogle Scholar
  151. 151.
    Cox, A. D. and Der, C. J. (1997) Farnesyl transferase inhibitors and cancer treatment: targeting simply ras? Biochim. Biophys. Acta 1333, F51–F71.Google Scholar
  152. 152.
    Bolton, G. L., Sebolt-Leopold, J. S., and Hodges, J. C. (1994) Ras oncogene directed approaches in cancer chemotherapy. Ann. Rep. Med. Chem. 29, 165–174.CrossRefGoogle Scholar
  153. 153.
    Leonard, D.M. (1997) Ras farnesyltransferase: a new therapeutic target. J. Med. Chem. 40, 2971–2990.PubMedCrossRefGoogle Scholar
  154. 154.
    Zujewski, J. (1998) NCI Cancernet Web Site.
  155. 155.
    Symons, M. (1995) The Rac and Rho pathway as a source of drug targets for ras-mediated malignancies. Curr. Opin. Biotech. 6, 668–674.PubMedCrossRefGoogle Scholar
  156. 156.
    Latchman, D. S. (1996) Transcription-factor mutations in disease. N. Engl. J. Med. 334, 28–33.PubMedCrossRefGoogle Scholar
  157. 157.
    Papavassiliou, A. G. (1997) Transcription factor-based drug design in anticancer drug development. Mol. Med. 3, 99–810.Google Scholar
  158. 158.
    Lovec, H., Grzeschiczek, A., Kowalski, M.-B., and Moroy, T. (1994) Cyclin D1/bcl-2 cooperates with myc genes in the generation of B-Cell lymphoma in transgenic mice. EMBO J. 13, 3487–3495.PubMedGoogle Scholar
  159. 159.
    Bodrug, S. E., Warner, B. J., Bath, M. L., Linderman, D. J., Harris, A. W., and Adams, J. M. (1994) Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc Gene. EMBO J. 13, 2124–2130.PubMedGoogle Scholar
  160. 160.
    Gauwerky, C. E., Haluska, F. G., Tsujimoto, Y., Nowell, P. C., and Croce, C. M. (1988) Evolution of B-Cell malignancy: pre-B-cell leukemia resulting from MYC activation in a B-cell neoplasm with a rearranged BCL2 gene. Proc. Natl. Acad. Sci. USA 85, 8548–8552.PubMedCrossRefGoogle Scholar
  161. 161.
    Wang, J., Xie, L. Y., Allan, S., Beach, D., and Hannon, G. J. (1998) Myc activates telomerase. Genes Dev. 12, 1769–1774.PubMedCrossRefGoogle Scholar
  162. 162.
    Wickstrom, E. L., Bacon, T. A., Gonzalez, A., Freeman, D. L., Lyman, G. H., and Wickstrom, E. (1988) Human promyelocytic leukemia HL-60 cell proliferation and c-myc protein expression are inhibited by an antisense pentadeca-deoxynucleotide targeted against c-myc mRNA. Proc Natl. Acad. Sci. USA 85, 1028–1032.PubMedCrossRefGoogle Scholar
  163. 163.
    Hideshima, T., Chauhan, D., Richardson, P., et al. (2002) NF-kappa B as a therapeutic target in multiple myeloma. J. Biol. Chem. 277, 16,639–16,647.PubMedCrossRefGoogle Scholar
  164. 164.
    Haefner, B. (2002) NF-κB: arresting a major culprit in cancer. Drug Discovery Today 7, 653–663.PubMedCrossRefGoogle Scholar
  165. 165.
    Semenza, G. L. (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8(Issue 4 Suppl), S62–S67.PubMedCrossRefGoogle Scholar
  166. 166.
    Culotta, E. and Koshland, D. E. (1993) Molecule of the year: p53 sweeps cancer research. Science 262, 1958–1961.PubMedCrossRefGoogle Scholar
  167. 167.
    Lane, D. P. (1992) p53 guardian of the genome. Nature 358, 15–16.PubMedCrossRefGoogle Scholar
  168. 168.
    Levine, A. J. (1997) p53, the cellular gate keeper for growth and division. Cell 88, 323–331.PubMedCrossRefGoogle Scholar
  169. 169.
    Harris, C. C. (1996) Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J. Natl. Cancer Inst. 88, 1442–1455.PubMedCrossRefGoogle Scholar
  170. 170.
    Kastan, M. B., Zhan, Q., El-Deiry, W. S., et al. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in Ataxia-Telagiectasia. Cell 71, 587–597.PubMedCrossRefGoogle Scholar
  171. 171.
    Miyashita, T and Reed, J. C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the bax gene. Cell 80, 293–299.PubMedCrossRefGoogle Scholar
  172. 172.
    Caelles, C., Helmberg, A. and Karin, M. (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-targeted genes. Nature 370, 220–223.PubMedCrossRefGoogle Scholar
  173. 173.
    Lane, D. P. and Lain, S. (2002) Therapeutic exploitation of the p53 pathway. Trends Mol. Med. 8(4), S38–S42.PubMedCrossRefGoogle Scholar
  174. 174.
    Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, D. E. (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–968.PubMedCrossRefGoogle Scholar
  175. 175.
    Kerr, D. J. and Workman, P., eds. (1994) New Molecular Targets for Cancer Chemotherapy, CRC Press, Boca Raton, FL.Google Scholar
  176. 176.
    Buttitta, F., Marchetti, A., Gadducci, A., et al. (1997) p53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. Br. J. Cancer 75, 230–235.PubMedCrossRefGoogle Scholar
  177. 177.
    Aas, T, Borressen, A.-L., Geisler, S., et al. (1996) Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat. Med. 2, 811–814.PubMedCrossRefGoogle Scholar
  178. 178.
    Herr, I. and Debatin, K.-M. (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98, 2603–2614.PubMedCrossRefGoogle Scholar
  179. 179.
    Foster, B. A., Coffey, H. A., Morin, M. J., and Rastinejsd, F. (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510.PubMedCrossRefGoogle Scholar
  180. 180.
    Hupp, T. R., Lane, D. P., and Ball, K. L. (2000) Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem. J. 352, 1–17.PubMedCrossRefGoogle Scholar
  181. 181.
    Piette, J., Neel, H., and Marechal, V. (1997) MDM2: keeping p53 under control. Oncogene 15, 1001–1010.PubMedCrossRefGoogle Scholar
  182. 182.
    Barak, Y., Juven, T., Haffner, R., and Oren, M. (1993) MDM-2 expression is induced by wild-type p53 activity. EMBO J. 12, 461–468.PubMedGoogle Scholar
  183. 183.
    Wu, X., Bayle, J. H., Olson, D., and Levine, J. A. (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132.PubMedCrossRefGoogle Scholar
  184. 184.
    Chen, X., Bargonetti, J., and Prives, C. (1995) p53 through p21 (WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res. 55, 4257–4263.PubMedGoogle Scholar
  185. 185.
    Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, P. L., and Vogelstein, B. (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358, 80–83.PubMedCrossRefGoogle Scholar
  186. 186.
    Finlay, C. A. (1993) The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol. Cell. Biol. 13, 301–306.PubMedGoogle Scholar
  187. 187.
    Thut, C. J., Goodrich, J. A., and Tjian, R. (1997) Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev. 11, 1974–1986.PubMedCrossRefGoogle Scholar
  188. 188.
    Momand, J., Jung, D., Wilczynski, S., and Niland, J. (1998) The MDM2 gene amplification database. Nucl. Acid. Res. 26, 3453–3459.CrossRefGoogle Scholar
  189. 189.
    Zhang, R. and Wang, H. (2000) MDM2 oncogene as a novel target for human cancer therapy. Curr. Pharm. Design 6, 393–416.CrossRefGoogle Scholar
  190. 190.
    Bottger, A., Bottger, V., Garcia-Echeverria, C., et al. (1997) Molecular characterization of the mdm2-p53 interactions. Mol. Biol. 9, 744–756.Google Scholar
  191. 191.
    Garcia-Echeverria, C., Chene, P., Blommers, M. J. J., and Furet, P. (2000) Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J. Med. Chem. 43, 3205–3208.PubMedCrossRefGoogle Scholar
  192. 192.
    Midgley, C. A. and Lane, D. P. (1997) p53 protein stability in tumor cells is not determined by mutation but is dependent on mdm2 binding. Oncogene 15, 1179–1189.PubMedCrossRefGoogle Scholar
  193. 193.
    Arriola, E. L., Lopez, A. R., and Chresta, C. M. (1999) Differential regulation of p21/waf-1/cip-1 and mdm2 by etoposide: etoposide inhibits the p53-mdm2 autoregulatory feedback loop. Oncogene 18, 1081–1091.PubMedCrossRefGoogle Scholar
  194. 194.
    Stoll, R., Renner, C., Hansen, S., et al. (2001) Chalcone derivatives antagonize interactions between the human oncoprotein mdm2 and p53. Biochemistry 40, 336–344.PubMedCrossRefGoogle Scholar
  195. 195.
    Chen, L., Agrawal, S., Zhou, W., Zhang, R., and Chen, Z. (1998) Synergistic activation of p53 by inhibition of mdm2 expression and DNA damage. Proc. Natl. Acad. Sci. USA 95, 195–200.PubMedCrossRefGoogle Scholar
  196. 196.
    Chen, L., Lu, W., Agrawal, S., Zhou, W., Zhang, R., and Chen, J. (1999) Ubiquitous induction of p53 in tumor cells by antisense inhibition of mdm2 expression. Mol. Med. 5, 21–34.PubMedGoogle Scholar
  197. 197.
    Wang, H., Oliver, P., Zeng, X., et al. (1999) MDM2 oncogene as a target for cancer therapy: an antisense approach. Intl. J. Oncol. 15, 653–660.Google Scholar
  198. 198.
    Bissonnette, R., Echeverri, F., Mahboubi, A., and Green, D. R. (1992) Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359, 552–554.PubMedCrossRefGoogle Scholar
  199. 199.
    Korsmeyer, S. J. (1992) Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80, 879–886.PubMedGoogle Scholar
  200. 200.
    Oltersdorf, T. and Fritz, L. C. (1998) The bcl-2 family: targets for the regulation of apoptosis. Ann. Rep. Med. Chem. 33, 253–262.CrossRefGoogle Scholar
  201. 201.
    Diaz, J.-L., Oltersdorf, T., Horne, W., et al. (1997) A common binding site mediates heterodimerization and homodimerization of bcl-2 family members. J. Biol. Chem. 272, 11,350–11,355.PubMedCrossRefGoogle Scholar
  202. 202.
    Enyedy, I. J., Ling, Y., Nacro, K., et al. (2001) Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J. Med. Chem. 44, 4313–4324.PubMedCrossRefGoogle Scholar
  203. 203.
    Ambrosini, G., Adida, C., Sirugo, G., and Altieri, D. C. (1998) Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J. Biol. Chem. 273, 11,177–11,182.PubMedCrossRefGoogle Scholar
  204. 204.
    Monzo, M., Rosell, R., Felip, E., et al. (1999) A novel anti-apoptosis gene: re-expression of surviving messenger RNA as a prognosis marker in non-small cell lung cancers. J. Clin. Oncol. 17, 2100–2104.PubMedGoogle Scholar
  205. 205.
    Grossman, D., Kim, P. J., Schechner, J. S., and Altieri, D. C. (2001) Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc. Natl. Acad. Sci. USA 98, 635–640.PubMedCrossRefGoogle Scholar
  206. 206.
    Blackburn, E. H. (1992) Telomerases. Ann. Rev. Biochem. 61, 113–129.PubMedCrossRefGoogle Scholar
  207. 207.
    Kim, N. W., Piatyszek, M. A., Prowse, K. R., et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015.PubMedCrossRefGoogle Scholar
  208. 208.
    Burger, A. M., Bibby, M. C., and Double, J. A. (1997) Telomerase activity in normal and malignant mammalian tissues: feasibility of telomerase as a target for cancer chemotherapy. Br. J. Cancer 75, 516–522.PubMedCrossRefGoogle Scholar
  209. 209.
    Sharma, S., Raymond, E., Soda, H., and Von Hoff, D. D. (1997) Telomerase and telomere inhibitors in preclinical development. Exp. Opin. Invest. Drugs 6, 1179–1185.CrossRefGoogle Scholar
  210. 210.
    Hamilton, S. E. and Corey, D. R. (1996) Telomerase: anti-cancr target or just a fascinating enzyme? Chem. Biol. 3, 863–867.PubMedCrossRefGoogle Scholar
  211. 211.
    Parkinson, E. K. (1996) Do telomerase antagonists represent a novel anti-cancer strategy? Br. J. Cancer 73, 1–4.PubMedCrossRefGoogle Scholar
  212. 212.
    Stewart, S. A. and Hahn, W. C. (2002) Prospects for anti-neoplastic therapies based on telomere biology. Curr. Cancer Drug Targets 2, 1–17.PubMedCrossRefGoogle Scholar
  213. 213.
    Aszalos, A. and Eckhardt, S. (1997) Molecular events as targets of anticancer drug therapy. Path. Oncol. Res. 3, 147–158.CrossRefGoogle Scholar
  214. 214.
    Perry, P. J., Gowan, S. M., Reszka, A. P., et al. (1998) 1,4-and 2,6-disubstituted amidoanthracene-9,10-dione derivatives as inhibitors of human telomerase. J. Med. Chem. 41, 3253–3260.PubMedCrossRefGoogle Scholar
  215. 215.
    Folkman, J. (1995) Angiogenesis in cancer, vascular rheumatoid and other diseases. Nat. Med. 1, 27–31.PubMedCrossRefGoogle Scholar
  216. 216.
    Folkman, J. (1995) Clinical applications of research on angiogenesis. N. Engl. J. Med. 333, 1757–1763.PubMedCrossRefGoogle Scholar
  217. 217.
    Folkman, J. (1996) Fighting cancer by attacking its blood supply. Sci. Am. 275, 150–154.PubMedCrossRefGoogle Scholar
  218. 218.
    Gourley, M. and Williamson, J. S. (2000) Angiogenesis: new targets for the development of anticancer chemotherapies. Curr. Pharm. Des. 6, 417–439.PubMedCrossRefGoogle Scholar
  219. 219.
    Nelson, N. J. (1998) News item: inhibitors of angiogenesis enter phase III testing. J. Natl. Cancer Inst. 90, 960–963.PubMedCrossRefGoogle Scholar
  220. 220.
    Lentzsch, S., Rogers, M. S., LeBlanc, R., et al. (2002) S-3-Amino-phthalimidoglutarimide inhibits angiogenesis and growth of B-cell neoplasias in mice. Cancer Res. 62, 2300–2305.PubMedGoogle Scholar
  221. 221.
    Mazzieri, R., Masiero, L., Zanetta, L., et al. (1997) Control of type IV collagenase activity by components of the urokinase-plasmin system: a regulatory mechanism with cell-bound reactants. EMBO J. 16, 2319–2332.PubMedCrossRefGoogle Scholar
  222. 222.
    Vihinen, P. and Kahari, V.-M. (2002) Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer 99, 157–166.PubMedCrossRefGoogle Scholar
  223. 223.
    Rabbani, S. A. (1998) Metalloproteases and urokinase in angiogenesis and tumor progression. In Vivo 12, 135–142.PubMedGoogle Scholar
  224. 224.
    Coussens, L. M., Fingleton, B., and Matrisian, L. M. (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392.PubMedCrossRefGoogle Scholar
  225. 225.
    Weidle, U. H. and Konig, B. (1998) Urokinase receptor antagonists: novel agents for the treatment of cancer. Exp. Opin. Invest. Drugs 7, 391–404.CrossRefGoogle Scholar
  226. 226.
    Kim, J., Wu, W., Kovalski, K., and Ossowski, L. (1998) Requirement of specific proteases in cancer cell intravasation as revealed by a novel semi-quantitative PCR-based assay. Cell 94, 335–362.CrossRefGoogle Scholar
  227. 227.
    Edwards, D. R. and Murphy, G. (1998) Proteases—invasion and more. Nature 394, 527–528.PubMedCrossRefGoogle Scholar
  228. 228.
    Huang, Y.-W., Baluna, R., and Vitetta, E. S. (1997) Adhesion molecules as targets for cnacer therapy. Histol. Histopathol. 12, 467–477.PubMedGoogle Scholar
  229. 229.
    Shaw, L. M., Rabinovitz, I., Wang, H. H.-F., Toker, A., and Mercurio, A. M. (1997) Activation of phosphoinositol 3-OH kinase by the α6β4 integrin promotes carcinoma invasion. Cell 91, 949–960.PubMedCrossRefGoogle Scholar
  230. 230.
    El-Hariry, I. and Pignatelli, M. (1997) Adhesion molecules: opportunities for modulation and a paradigm for novel therapeutic approaches in cancer. Exp. Opin. Invest. Drugs 6, 1465–1478.CrossRefGoogle Scholar
  231. 231.
    Engleman, V. W., Kellogg, M. S., and Rogers, T. E. (1996) Cell adhesion integrins as pharmaceutical targets. Ann. Rep. Med. Chem. 31, 191–200.CrossRefGoogle Scholar
  232. 232.
    Fish, R. G. (1996) Role of gangliosides in tumor progression: a molecular target for cancer therapy? Medical Hypothesis 46, 140–144.CrossRefGoogle Scholar
  233. 233.
    Workman, P. and Kaye, S. B. (2002) Translating basic cancer research into new cancer therapeutics. Trends Mol. Med. 8(Issue 4 Suppl), S1–S9.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • John K. Buolamwini
    • 1
  • Haregewein Assefa
    • 1
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyUniversity of Tennessee Health Science CenterMemphis

Personalised recommendations